期刊文献+

双分数跳-扩散过程下幂期权定价模型 被引量:4

The power option pricing model in bi-fractional jump-diffusion process
下载PDF
导出
摘要 假设标的资产的价格服从双分数跳-扩散过程,在利率、波动率均为常数的情况下,运用保险精算的方法研究幂期权的定价问题,给出双分数跳-扩散过程下欧式幂期权的定价公式,并与股票价格服从分数-跳扩散过程下欧式幂期权的定价模型进行比较,验证了该公式是分数-跳扩散过程下欧式幂期权定价公式的推广. Assume that stock price follows a bi‐fractional jump‐diffusion process ,the interest rate and volatility rate are constant ,the power option is discussed using the actuarial approach , and its pricing formula is obtained .Then comparative analysis is made of standard European power option pricing model when stock price follows jump diffusion process ,which proves that the pricing formula gains popularity in the corresponding European power option pricing on jump‐diffusions .
作者 陈智香 薛红
出处 《西安工程大学学报》 CAS 2016年第2期262-267,共6页 Journal of Xi’an Polytechnic University
基金 陕西省教育厅专项科研基金资助项目(14JK1299)
关键词 双分数布朗运动 跳-扩散过程 欧式幂期权 保险精算 bi-fractional Brownian motion jump-diffusion process european power option ac-tuarial approach
  • 相关文献

参考文献17

二级参考文献123

共引文献81

同被引文献47

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部