期刊文献+

一类随机互惠模型的渐近性质 被引量:3

Asymptotic properties of a stochastic mutualism model
下载PDF
导出
摘要 针对一类具有饱和项和毒素影响的两种群互惠模型,考虑在外界白噪声扰动下相应的随机两种群互惠模型。利用随机微分方程的基本理论以及一些不等式技巧,得到此随机两种群互惠模型解的全局存在唯一性、随机有界性、随机持久性、随机灭绝性、全局吸引性和样本轨道估计等种群动力学性质。数值模拟验证了所得的结论。 For a stochastic two-species mutualism model with the saturation and toxin effect, its stochastic two-species mutualism model with white noise perturbation is investigated. Applying theory of stochastic differential equations and some inequalities, some population dynamical properties including the existence of global positive solutions, stochastic boundedness, stochastic permanence, stochastic extinction, global attractivity and pathwise estimation are obtained. Some numerical simulations complement analytical findings.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2016年第2期162-169,共8页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11501148) 山东省自然科学基金资助项目(ZR2015AQ002)
关键词 互惠模型 随机持久 随机灭绝 全局吸引 LYAPUNOV函数 mutualism model stochastic permanence stochastic extinction global attractivity Lyapunov function
  • 相关文献

参考文献17

  • 1GOH B S. Global stability in many-species systems[ J]. American Naturalist, 1977, 111 (977) : 135 -143.
  • 2GOPALSAMY K. Global asymptotic stability in a periodic Lotka-Volterra system [ J ]. The Journal of the Australian Mathematical Society: Series B-Applied Mathematics, 1985, 27( 1 ) : 66 -72.
  • 3WU J H, WEI G S. Coexistence states for cooperative model with diffusion [ J ]. Computers & Mathematics with Applications, 2002, 43 ( 10 ) : 1277 - 1290.
  • 4JIANG D Q, SHIN Z, LI X Y. Global stability and stochastic permanence of a non-antonomous logistic equation with random perturbation[ J]. Journal of Mathematical Analysis and Applications, 2008, 340( 1 ) : 588 -597.
  • 5LI X Y, JIANG D Q, MAO X R. Population dynamical behavior of Eotka-Volterra system under regime switching[ J ]. Journal of Computational and Applied Mathematics, 2009, 232(2) : 427 -448.
  • 6BAHAR A, MAO X R. Stochastic delay Lotka-Voherra model [ J ]. Journal of Mathematical Analysis and Applications, 2004, 292 (2) : 364 -380.
  • 7MAO X R, MAYION G, RENSHAW E. Environmental Brownian noise suppresses explosions in population dynamics [ J]. Stochastic Processes and their Applications, 2002, 97( 1 ) : 95 - 110.
  • 8LI Y Q, GAO H L. Existence, uniqueness and global asymptotic stability of positive solutions of a predator-prey system with Holling II functional re- sponse with random perturbation[ J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68 (6) : 1694 -1705.
  • 9JI C Y, JIANG D Q, Persistence and non-persistence of a mutualism system with stochastic perturbation [ J], Discrete and Continuous Dynamical Systems, 2012, 32(3) : 867-889.
  • 10LIU M, WANG K. Analysis of a stochastic autonomous mutualism model[ J ]. Journal of Mathematical Analysis and Applications, 2013,402 (1) : 392 - 403.

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部