摘要
针对一类具有饱和项和毒素影响的两种群互惠模型,考虑在外界白噪声扰动下相应的随机两种群互惠模型。利用随机微分方程的基本理论以及一些不等式技巧,得到此随机两种群互惠模型解的全局存在唯一性、随机有界性、随机持久性、随机灭绝性、全局吸引性和样本轨道估计等种群动力学性质。数值模拟验证了所得的结论。
For a stochastic two-species mutualism model with the saturation and toxin effect, its stochastic two-species mutualism model with white noise perturbation is investigated. Applying theory of stochastic differential equations and some inequalities, some population dynamical properties including the existence of global positive solutions, stochastic boundedness, stochastic permanence, stochastic extinction, global attractivity and pathwise estimation are obtained. Some numerical simulations complement analytical findings.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2016年第2期162-169,共8页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(11501148)
山东省自然科学基金资助项目(ZR2015AQ002)
关键词
互惠模型
随机持久
随机灭绝
全局吸引
LYAPUNOV函数
mutualism model
stochastic permanence
stochastic extinction
global attractivity
Lyapunov function