期刊文献+

基于粒子群优化的动力设备主动振动控制研究 被引量:4

Active vibration control for power equipment using particle swarm optimization technique
下载PDF
导出
摘要 文章针对动力设备振动控制,利用比例-积分-微分(PID)和线性二次型调节器(LQR)最优控制理论,并引入粒子群优化算法,分别建立了PSO-PID和PSO-LQR主动振动控制器;分别从传递函数和状态空间方程2种角度出发,建立控制模型。数值结果表明,2种主动控制器均能有效降低动力设备传递至基础的峰值力,但PSO-LQR控制器对于体系稳定时态的控制效果明显优于PSO-PID控制器。对于实际工程,需要择优选取一种最适宜方法。针对主动振动控制中存在的时滞现象,对PSO-LQR控制器进行了含时滞研究,结果表明,随着时滞增加,传递至基础的峰值力与无时滞相比大幅增加,呈发散态势。 In this paper, active vibration control strategies for power equipment respectively using proportional-integral-differential(PID) control and Linear Quadratic Regulator(LQR) optimal control were proposed, and the particle swarm optimization(PSO) technique was utilized to construct the PSO-PID and PSO-LQR controllers. Two different control models using the theories of transfer function and state space equation were derived. The numerical results showed that two PSO based controllers could both reduce the peak transmitted force from the equipment to the foundation effectively, however, the PSO-LQR controller could perform better obviously than PSO-PID controller when the system was steady in the time domain, and this phenomenon indicated that a most suitable controller should be selected seriously according to the actual characteristics of different controllers and controlled object in practice. Finally, aiming at the time delay in an active vibration controller, the PSO- LQR controller with time delay was investigated, and the results indicated that the peak transmitted force substantially increased when the time delay increased, and a trend of divergence emerged.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期494-498,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(51179043)
关键词 比例-积分-微分控制 线性二次型最优控制 粒子群优化算法 传递函数 状态空间方程 时滞 proportional-integral-differential(PID) control Linear Quadratic Regulator (LQR) parti cle swarm optimization(PSO) transfer funetion state space equation time delay
  • 相关文献

参考文献11

  • 1Crocker M J, Fuller C. Active vibration control [M]//Hand- book of Noise and Vibration Control. John Wiley &. Sons, 2007 : 770 - 784.
  • 2黄伟,朱大勇,徐建,卢剑伟.精密设备主动SAWPSO-PID振动控制器设计及仿真研究[J].合肥工业大学学报(自然科学版),2014,37(10):1153-1157. 被引量:1
  • 3Khot S M, Yelve N P, Toner R, et al. Active vibration control of cantilever beam by using PID based output feedback control- ler [J]. Journal of Vibration and Control, 2012,18(3):366- 372.
  • 4Gudu R. Sliding mode and PID control of a structural system a- gainst earthquake [J]. Mathematical and Computer Modelling, 2006,44(1):210-217.
  • 5Fan G W, Nelson H D, Crouch P E, et al. LQR-based least- squares output feedback control of rotor vibrations using the complex mode and Balanced realization methods [J]. Journal of Engineering for Gas Turbines and Power, 1993,115(2) ; 314- 323.
  • 6Zhang J, He L, Wang E, et al. A LQR controller design for ac- tive vibration control of flexible structures[C]//Pacific-Asia Workshop on Computational Intelligence and Industrial Appli- cation, 2008 : 127- 132.
  • 7Eberhart R C, Kennedy j. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Vol 1,1995:39-43.
  • 8Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system [J]. IEEE Transactions on Energy Conversion, 2004,19 (2) : 384- 391.
  • 9Amini F,Hazaveh N K,Rad A A. Wavelet PSO-based LQR al- gorithm for optimal structural control using active tuned mass dampers [J]. Computer-Aided Civil and Infrastructure Engi- neering,2013,28(7):542-557.
  • 10Farshidiardar A, Saghafi A, Kalami S M, et al. Active vibration isolation of machinery and sensitive equipment using H∞ control criterion and particle swarm optimization method[J]. Meccanica, 2012,47(2) :437-453.

二级参考文献20

  • 1张葛祥,金炜东,胡来招.多变量系统控制器的参数满意优化设计[J].控制理论与应用,2004,21(3):362-366. 被引量:15
  • 2Frank L L.Applied optimal control and estimation[M].Englewood Cliffs,N.J.Prentice Hall,1992.
  • 3Daniel E M,Mauro R.Simultaneous stabilization with near optimal LQR performance[J].IEEE Trans Automat Contr,2001,46(10):1543-1555.
  • 4De Hoff R L,Hall W E Jr.Design of a multivariable controller for an advanced turbofan engine[C]// Proceedings of the Fifteenth Conference on Decision and Control and Symposium on Adaptive Processes.Institute of Electrical and Electronics Engineers,Inc,1976:1002-1008.
  • 5Cho G B,Kim P H. A precise control of AC servo motor u- sing neural network PID controller [J]. Current Science, 2005,89(1):23-26.
  • 6Kennedy J, Eberhart R C. A new optimizer using particle swarm theory[C]//6th International Symposium on Micro- machine and Human Science, 1995 : 39-43.
  • 7Shi Y, Eberhart R. A modified particle swarm optimizer [C]//IEEE World Congress on Computational Intelligence, 1998:69-73.
  • 8Mizutani K,Fujita Y,Ohmori H. Hybrid control system for micro-vibration isolation[M]//Advanced Motion Control, Vol 2,1996 = 577- 582.
  • 9Gaing Z L. A particle swarm optimization approach {or opti- mum design of PID controller in AVR system[J]. Energy Conversion, 2004,19 (g) : 384 -391.
  • 10Nasri M. A PSO:based optimum design of PID controller for a linear brushless DC motor[J]//Proceedings of World A- cademy of Science, Engineering and Technology, 2007,20: 211- 215.

共引文献8

同被引文献26

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部