期刊文献+

预应力混凝土梁损伤识别的神经网络方法研究 被引量:4

Neural network method for damage identification of prestressed concrete beams
下载PDF
导出
摘要 文章通过有限元分析阐明了固有频率变化率和模态置信度在损伤识别研究中的重要意义,提出了以其为损伤指标的反向传播(backpropagation,BP)神经网络和概率神经网络(probabilistic neural network,PNN)的损伤状态识别方法。为验证所提方法的实用性,对11根多级损伤状态的真实预应力混凝土梁进行识别,并与基于固有频率变化率和模态置信度的普通理论方法进行比较。研究表明,普通理论方法实用性较差,很难有效识别各梁损伤状态;而BP神经网络和PNN识别方法均能有效应用于实际中,且具有很高的损伤识别精度,为结构损伤识别方法研究提供了新思路。 In this paper, through simulating modal analysis of damage beams with ABAQUS, it is expounded that both natural frequency change ratio and modal assurance criterion are of great significance for damage identification. Backpropagation(BP) neural network and probabilistic neural net- work(PNN) for damage identification based on these modal parameters are proposed. Through the experimental analysis of 11 prestressed concrete beams under multistage damage status and the comparison between the proposed method and the theoretical method based on natural frequency change ratio and modal assurance criterion, it is shown that the theoretical method based on these damage indexes is hardly practical in engineering application, while the BP and PNN neural networks can be effectively applied to identifying damages with high precision. The study results can offer a new idea for damage identification researches.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期503-507,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(51378507) 长江学者和创新团队发展计划资助项目(IRT1296) 中南大学教师研究基金资助项目(2013JSJJ019)
关键词 预应力混凝土梁 神经网络 损伤识别 模态参数 prestressed concrete beam neural network damage identification modal parameter
  • 相关文献

参考文献7

二级参考文献27

  • 1周建中,赵鸿铁,薛建阳.粘弹性阻尼结构的递归神经网络优化[J].西安建筑科技大学学报(自然科学版),2005,37(1):35-39. 被引量:7
  • 2郭惠勇,张陵,蒋健.不同信息融合方法在结构损伤识别上的应用和分析[J].工程力学,2006,23(1):28-32. 被引量:11
  • 3高维成,刘伟.网壳结构损伤识别的数值模拟及试验研究[J].工程力学,2006,23(10):111-117. 被引量:6
  • 4郭小荟,马小平.基于粗糙集的故障诊断特征提取[J].计算机工程与应用,2007,43(1):221-224. 被引量:20
  • 5Doebling S W, Farrar C R. The state of the art in structural identification of constructed facilities [R]. Los Alamos National Laboratory Report, Los Alamos, USA, 1999.
  • 6Ou J P, Li H. The art-in-the-art and practice of structural health monitoring for civil infrastructures in the mainland of China [C]//Ou J P, Li H, Duan Z D. Structural Health Monitoring and Intelligent Infrastructure. London: Talor & Francis, 2005: 69-88.
  • 7Hall D L. Mathematical techniques in multi-sensor data fusion [M]. Boston: Artech House, USA, 1992.
  • 8Jiang Shaofei, Zhang Chunming, Koh C G. Structural damage detection by integrating data fusion and probabilistic neural network [J]. Advances in Structural Engineering, 2006, 9(4): 445-458.
  • 9Pawlak Z. Rough sets [J]. International Journal of Computer and Information Science, 1982, 11(5): 341- 356.
  • 10Specht D F. Probabilistic neural networks [J]. International Journal of Neural Networks, 1990, 3: 109- 118.

共引文献23

同被引文献26

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部