期刊文献+

氢化锆慢化熔盐堆钍铀转换性能初步分析 被引量:3

Preliminary analysis of Th-U conversion performance in a ZrH-moderated molten salt reactor
原文传递
导出
摘要 中子能谱对钍基燃料在熔盐堆中的利用效率及温度反馈系数等安全问题有较大影响,所以对熔盐堆新型慢化剂的研究具有重要意义。本工作基于SCALE6计算程序,对不同几何栅元结构的氢化锆栅元组件在熔盐堆的物理性能进行了研究,分别计算了中子能谱、钍铀转换比、^(233)U浓度、总温度反馈系数以及燃耗等中子物理参量。结果表明,减小六边形栅元对边距或者增加熔盐占栅元体积比可以增加钍铀转换比和改善温度反应性系数;当加入的氢化锆慢化剂体积份额为0.1时就可以将熔盐堆^(233)U初始浓度降低到2.5×10^(-2)以内;氢化锆慢化熔盐堆在超热谱条件下,其^(233)U初装载量和超铀核素产量较小,同时堆芯较为紧凑。 Background: The neutron spectrum plays an important role in thorium-based fuel utilization efficiency and temperature feedback coefficient concerning reactor operation safety, so it is very important to study the new moderator material used in molten salt reactor (MSR).Purpose: This study aims to analyze thethorium-uranium conversion performance of a ZrH-moderated molten salt reactor and analyze the feasibility of ZrH as moderator in molten salt reactor.Methods: SCALE program is used to calculate neutron spectrum, thorium uranium conversion ratio,233U concentration, total temperature feedback coefficient and burnup calculation with different lattice parameters.Results: The thorium uranium conversion ratio and total temperature feedback coefficient can be improved significantly by reducing lattice size or increasing salt volume ratio; the initial233U concentration for start reactor can be easily controlled under 2.5×10^2 when the volume share of added ZrH is 0.1.Conclusion:Compared to the graphite-moderated MSR, ZrH-moderated MSR reduces initial233U inventory and transuraniums (TRUs) production, and makes its core more compact.
出处 《核技术》 CAS CSCD 北大核心 2016年第5期88-94,共7页 Nuclear Techniques
基金 中国科学院战略性先导科技专项(No.XDA02010100)资助~~
关键词 氢化锆 熔盐堆 钍铀转化性能 233U装载量 ZrH moderator, MSR, Thorium uranium conversion performance, 233U inventory
  • 相关文献

参考文献21

  • 1U.S. Department of Energy. A technology roadmap forgeneration IV nuclear energy systems[R]. USA: NuclearEnergy Research Advisory Committee and the GenerationIVInternational Forum, 2002.
  • 2Serp J,Allibreat M, Benes O, et al. The molten saltreactor (MSR) in generation IV: overview andperspectivesfJ]. Progress in Nuclear Energy, 2014,77:308-319.
  • 3Delpech S, Merle-lucott E, Heuber D,et al. Reactorphysic and reprocessing scheme for innovative molten saltreactor system[J]. Journal of Fluorine Chemistry, 2009,130(1): 11-17.
  • 4Nuttin A, Heuer D, Billebaud A, et al. Potential ofthorium molten salt reactor: detailed calculations andconcept evolutions view of a large nuclear energyproduction[J]. Progress in Nuclear Energy, 2005, 46(1):77-99.
  • 5Merle-lucott E,Heuer D, Allibert M, et al. Optimizationand simplification of the concept of non-moderatedthorium molten salt reactor[C]. International Conferenceon the Physics of Reactors, PHYSOR-2008, Interlaken,Switzerland, 2008.
  • 6Zou C Y,Cai X Z, Jiang D Z, et al Optimization oftemperature coefficient and breeding ratio for agraphite-moderated molten salt reactor[J]. NuclearEngineering and Design, 2015, 281: 114-120.
  • 7Nagy K, Kloosterman J,Lathouwers D, et al. The effectsof core zoning on the graphite lifespan and breeding gainof a moderated molten salt reactor[J]. Annals of NuclearEnergy, 2012, 43: 19-25.
  • 8Kazamikov V V,Primakov N Q Rudenko V A. Effect ofneutron irradiation on the microstructure of zirconiumhydride[J]. International Association for Hydrogen Energy,1997, 22(2-3): 169-173.
  • 9Olander D, Greespan E, Garkisch H D. Uranium-zirconium hydride fuel properties [J]. Nuclear Engineeringand Design, 2009,239(8): 1406-1424.
  • 10Transatomic Power. Technical white paper [OL].2014-2-16[2015-12-20]. http://www.transatomicpower.com.

同被引文献10

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部