期刊文献+

混合水平正交设计的最优选择 被引量:6

Optimal Selection of Mixed-level Orthogonal Arrays
原文传递
导出
摘要 利用矩阵象方法,首先将强度2下混合水平正交设计的混杂度量,推广到强度t下混合水平正交设计的混杂度量,然后通过这些混杂度量指标,给出了强度t下混合水平正交设计的四个分辨度指标,其具有水平置换不变性,并能同时用于等水平情形和混合水平情形。最后对混合水平正交表OA(1S,6^13^6,2)进行了实例计算,并讨论四个分辨度的差异性。 In this paper, the matrix image method is employed to study several generalized resolution of nonregular fractional factorial designs. The proposed generalized resolutions can be applied to regular, nonregular, symmetric, and asymmetric designs, which generalized the results of resolution of regular fractional factorial designs. Moreover, the generalized resolutions are coding invariant, i.e. do not depend on the coding chosen for the experimental factors. Finally, the generalized resolutions are illustrated by an orthogonal array OA(18,6^13^6, 2).
出处 《数理统计与管理》 CSSCI 北大核心 2016年第3期403-410,共8页 Journal of Applied Statistics and Management
基金 博士点专项基金资助项目(20120092110021) 江苏省自然科学基金(BK20141326) 江苏省普通高校研究生科研创新计划项目(2014KYZZ0068)
关键词 正交设计 混合水平 混杂度量 分辨度 orthogonal array, mixed-level, measure of confounding, resolution, trace
  • 相关文献

参考文献19

  • 1Bullington R G, Lovin S G, Miller D M, Woodall W H. Improvement of an industrial thermostat using designed experiments [J]. JounJal of Quality Technology, 1993, 25:262- 270.
  • 2Watkins D, Bergman A, Horton D. Optimization of tool life on the shop floor using design of exper- iments [J]. Quality Engineering, 1994, 6: 609-620.
  • 3Taguchi G. Introduction to Quality Engineering [M]. Tokyo: Asian Productivity Organization, 1986.
  • 4Hedayat A S, Sloane N J A, Stufken J. Orthogonal Arrays: Theory and Applications [M]. New York: Springer, 1999.
  • 5Fries A, Hunter W G. Minimum aberration 2^k-p designs [J]. Technometrics, 1980, 22: 601-608.
  • 6Deng L Y, Tang B. Generalized resolution and minimum aberration criteria for PB and other non- regular factorial designs [J]. Statistic Sinica. 1999, 9:1071 -1082.
  • 7Tang B, Deng L Y. Minimum G2-aberration for nonregular fractional factorial designs [J]. Ann. Statist., 1999, 27: 1914-1926.
  • 8Xu H, Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs [J]. Ann. Statist., 2001, 29: 549-560.
  • 9Xu H, Phoa F K H, Wong W K. Recent developments in nonregular fractional factorial designs [J].Statistics Surveys, 2009, 3:18 -46.
  • 10Pang F, Liu M Q. Indicator function based on complex contrast and its application in general factorial designs [J]. Journal of Statistical planning and inference, 2009, 140:189- 197.

二级参考文献10

  • 1盛予宁,周纪芗.几个正交表列间的交互作用[J].应用概率统计,1994,10(1):5-9. 被引量:3
  • 2Hedayat A S, Sloane N J A, John Sutfken. Orthogonal Arrays theory and applications [M]. Springer, 1999.
  • 3杨子胥.正交表的构造[M].山东人民出版社,1975.
  • 4Sobol I M. Global sensitivity indices for nonlinear mathematical model and their Monte Carlo esti- mates [J]. Math.Comp.Simulation, 2001: 271-280.
  • 5Sobol I M. Theorems and examples on high dimensional model representation [J]. Reliability Engi- neering and System Safety, 2003, 79: 187-193.
  • 6Zhang Yingshan, Lu Yiqiang, Pang Shanqi. Orthogonal arrays obtatined by orthogonal decomposition of projection matrices [J]. Statistica Sinica, 1999, 9: 595-604.
  • 7庞善起,陈利艳,闫荣.正交表交互作用列的判定方法[J].河南师范大学学报(自然科学版),2007,35(3):215-215. 被引量:3
  • 8团体著者,正交法和三次设计,1985年,20页
  • 9Zhang Y S, Lu Y Q and Pang S Q. Orthogonal arrays obtatined by orthogonal decomposition of projection matrices. Statistica Sinica, 1999, 9: 595-604.
  • 10陈雪平,张应山.交互作用的两类定义及其关系推导[J].数理统计与管理,2010,29(4):642-647. 被引量:7

共引文献10

同被引文献60

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部