期刊文献+

三参数Ⅰ型广义Logistic分布参数的一类改进估计 被引量:8

An Improved Estimation for 3-parameter Type ⅠGeneralized Logistic Distribution
原文传递
导出
摘要 广义Logistic分布族在生物、医学、金融管理,以及气象、水文、地质等领域有重要的应用。迄今为止,对此分布族的研究已取得了一系列重要成果;令人遗憾的是,关于三参数I型广义Logistic分布的研究还很不深入。本文利用矩法首先讨论三参数I型广义Logistic分布形状参数的估计,然后利用线性回归分析方法讨论分布的位置参数和刻度参数的估计,改进矩估计。本文所给出的分布参数的估计方法简单、有效;证明了在一定的条件下,本文给出的估计量存在、唯一,且模拟显示:估计量在中小样本情形下,一致优于分布参数的矩估计和L矩估计;特别是在样本容量n介于20和30之间时,估计量有更小的估计偏差和方差。估计方法简单、实用且有效。 There are many important applications in biology, medicine, financial management, meteorology, hydrology, geology and other fields for the generalized Logistic distributions. So far, a series of important achievements have been obtained for this family distributions. Unfortunately, the 3-parameter type I generalized Logistic distribution needs further research. We using moment method to discussed the shape parameter estimation. And then, using linear regression model to discussed location parameter and scale parameter estimation, improved the moment estimates. We proposed the parameter estimation method is simple and effective. We proved that estimates exist and the only, under certain conditions. Simulation research shows that: We proposed the estimates are always better than moment estimates and L-moment estimates, in the case sample size is small or medium. In particular, when the sample size n between 20 to 30, the estimators have smaller bias and variance.
作者 韩雪 程维虎
出处 《数理统计与管理》 CSSCI 北大核心 2016年第3期445-455,共11页 Journal of Applied Statistics and Management
基金 北京市自然科学基金资助项目(1154005)
关键词 三参数I型广义Logistic分布 矩估计 L矩估计 线性回归模型 模拟研究 type I 3-parameter generalized Logistic distribution, moment estimation, L-moment estimation, linear regression model, simulation study
  • 相关文献

参考文献21

  • 1Balakrishnan N. Handbook of The Logistic Distribution [M]. New York: Marcel Dekker Inc., 1982.
  • 2Dubey S D. A new derivation of the logistic distribution [J]. Naval Res. Logist. Quart., 1969, 16: 37-40.
  • 3George E O, Ojo M O. On a generalization of the logistic distribution [J]. Annals of the Institute of Statistical Mathematics A, 1980, 32: 161-169.
  • 4Davidson R R. Some properties of a family of generalized logistic distributions [A]. In: Ikeda S, et al. (ed.). Statistical Climatology, Developments in Atmospheric Science 13 [C]. New York: evier, 1980.
  • 5George E O, Mudholkar G S. A characterization of the logistic distribution by a sample median [J]. Ann. Inst. Statist. Math., 1981, 33: 125-129.
  • 6Rasool M T, Arshad M, Ahmad M I. Estimation of generalized logistic distribution by probability weighted moments [J]. Pakistan Journal of Applied Science, 2002, 2(4): 485-487.
  • 7Rasool M T, Arshad M, Abroad M I. Generalized logistic distribution: An application to the maxi- mum annual rainfalls [J]. Pakistan Journal of Applied Science, 2002, 2(8): 843- 844.
  • 8Ojo M O, Olapade A K. On A six-parameter generalized logistic distributions [J]. Kragujevac J. Math., 2004, 26:31 -38.
  • 9Arak M M, Serge B P. On the distribution of order statistics from generalized logistic samples [J]. METRON-International Journal of Statistics, 2004, LXII(1): 63 -71.
  • 10Balakrishnan N, Leung M Y. Order statistics, from the type I generalized logistic distribution [J]. Commun. Statist.-Simula., 1988a, 17: 25-50.

同被引文献64

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部