期刊文献+

机器学习方法在基因功能注释中的应用 被引量:1

Machine Learning Methods for Gene Function Annotation
下载PDF
导出
摘要 目前,基于计算机数学方法对基因的功能注释已成为热点及挑战,其中以机器学习方法应用最为广泛。生物信息学家不断提出有效、快速、准确的机器学习方法用于基因功能的注释,极大促进了生物医学的发展。本文就关于机器学习方法在基因功能注释的应用与进展作一综述。主要介绍几种常用的方法,包括支持向量机、k近邻算法、决策树、随机森林、神经网络、马尔科夫随机场、logistic回归、聚类算法和贝叶斯分类器,并对目前机器学习方法应用于基因功能注释时如何选择数据源、如何改进算法以及如何提高预测性能上进行讨论。 In recent years, it is very popular to annotate gene functions with the methods of computation, mathematics and statistics, among which the machine learning method is widely used. A lot of researchers are proposing faster, more effective and more accurate machine learning methods for gene functional annotation, which promote the development of biology and medicine. In this review, we provides an overview about machine learning methods in gene functional annotation including support vector machine, k-nearest-neighbour, decision tree, random forests, neural network, Markov random field, logistic regression, clustering algorithms and Bayes classifier. Besides, we also summarized and discussed the ways to select the data source, and to improve algorithms and increase the prediction performance.
机构地区 宁波大学医学院
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2016年第5期496-503,共8页 Chinese Journal of Biochemistry and Molecular Biology
基金 浙江省自然科学基金项目(No.LQ13C060002) 国家自然科学基金项目(No.81172771 No.31301084) 宁波大学学科项目(No.XKL14D2097和No.XYL14023) 宁波大学王宽诚教育基金项目~~
关键词 功能注释 机器学习法 功能预测 基因 functional annotation machine learning method functional prediction gene
  • 相关文献

参考文献2

二级参考文献35

  • 1周思畅,倪崖,石其贤.四次跨膜蛋白CD9与精卵融合[J].国外医学(计划生育分册),2005,24(1):13-15. 被引量:4
  • 2Ota T,Suzuki Y,Nishikawa T,et al.Complete sequencing and characterization of 21,243 full-length human cDNAs[J].Nat Genet,2004,36(1):40-45.
  • 3Okazaki,Y,Furuno M,Kasukawa T,et al.Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs[J].Nature,2002,420(6915):563-573.
  • 4Taft R J,Pang K C,Mercer T R,et al.Non-coding RNAs:regulators of disease[J].J Pathol,2010,220(2):126-139.
  • 5Wilusz J E,Sunwoo H,Spector D L.Long noncoding RNAs:functional surprises from the RNA world[J].Genes Dev,2009,23(13):1494-1504.
  • 6Mercer T R,Dinger M E,Mattick J S.Long non-coding RNAs:insights into functions[J].Nat Rev Genet,2009,10(3):155-159.
  • 7Lapidot M,Pilpel Y.Genome-wide natural antisense transcription:coupling its regulation to its different regulatory mechanisms[J].EMBO Rep,2006,7(12):1216-1222.
  • 8Braconi C,Kogure T,Valeri N,et al.microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer[J].Oncogene,2011,30(47):4750-4756.
  • 9Yang J H,Li J H,Jiang S,et al.ChIPBase:a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data[J].Nucleic Acids Res,2013,41(Database issue):D177-187.
  • 10Sati S,Ghosh S,Jain V,et al.Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci[J].Nucleic Acids Res,2012,40(20):10018-10031.

共引文献20

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部