期刊文献+

Non-negative matrix factorization based unmixing for principal component transformed hyperspectral data 被引量:1

Non-negative matrix factorization based unmixing for principal component transformed hyperspectral data
原文传递
导出
摘要 Non-negative matrix factorization(NMF) has been widely used in mixture analysis for hyperspectral remote sensing. When used for spectral unmixing analysis, however, it has two main shortcomings:(1) since the dimensionality of hyperspectral data is usually very large, NMF tends to suffer from large computational complexity for the popular multiplicative iteration rule;(2) NMF is sensitive to noise(outliers), and thus the corrupted data will make the results of NMF meaningless. Although principal component analysis(PCA) can be used to mitigate these two problems, the transformed data will contain negative numbers, hindering the direct use of the multiplicative iteration rule of NMF. In this paper, we analyze the impact of PCA on NMF, and find that multiplicative NMF can also be applicable to data after principal component transformation. Based on this conclusion, we present a method to perform NMF in the principal component space, named ‘principal component NMF'(PCNMF). Experimental results show that PCNMF is both accurate and time-saving. Non-negative matrix factorization (NMF) has been widely used in mixture analysis for hyperspectral remote sensing. When used for spectral unmixing analysis, however, it has two main shortcomings: (1) since the dimensionality of hyperspectral data is usually very large, NMF tends to suffer from large computational complexity for the popular multiplicative iteration rule; (2) NMF is sensitive to noise (outliers), and thus the corrupted data will make the results of NMF meaningless. Although principal component analysis (PCA) can be used to mitigate these two problems, the transformed data will contain negative numbers, hindering the direct use of the multiplicative iteration rule of NMF. In this paper, we analyze the impact of PCA on NMF, and find that multiplicative NMF can also be applicable to data after principal component transformation. Based on this conclusion, we present a method to perform NMF in the principal component space, named 'principal component NMF' (PCNMF). Experimental results show that PCNMF is both accurate and time-saving.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第5期403-412,共10页 信息与电子工程前沿(英文版)
关键词 Non-negative matrix factorization(NMF) Principal component analysis(PCA) ENDMEMBER HYPERSPECTRAL Non-negative matrix factorization (NMF), Principal component analysis (PCA), Endmember,Hyperspectral
  • 相关文献

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部