摘要
图G边的一个标号f是指边集E(G)到集合{1,2,…,m}之间的一个一一映射,即:e∈E(G),■t,1≤t≤m,使得f(e)=t.图G的边带宽B'(G)=min B_f'(G),其中B_f'(G)=max{|f(uv)-f(uw)|:uv,uw∈E(G)}.给出树T的边带宽满足「(m-1)/(d-1)」≤B'(T)≤l-s,0≤s≤l/2,其中d为树T的直径,l为树T的叶子数.而且k(为偶数)元正则树的边带宽B'(T*)≤l/2,广义星图T*的边带宽B'(T*)=l或l-1.
A label f of an edge in a graph G refers to one-mapping from the edge set E(G)to the set{1, 2,…,m},namely:e∈E(G),t,1≤t≤m,satisying f(e)= t.The edge-bandwidth of a graph B'(G)= minBf'(G),wherein Bf'(G)= max{ | f(uv)-f(uw)| :uv,uw∈E(G)}.The paper obtains that the ine-qualities「(m-1)/(d-1)┐≤B'(T)≤l-s,0≤s≤l/ 2,wherein d is the diameter of a tree and l is the number of its leaves.Moreover the edge-bandwidth of a k(even)-regular tree T satisfies the inequalities B'(T)≤l/ 2,and the edge-bandwidth of a generalized star graph T* does B'(T*)= l or l-1.
出处
《湖北民族学院学报(自然科学版)》
CAS
2016年第1期1-4,19,共5页
Journal of Hubei Minzu University(Natural Science Edition)
基金
四川省教育厅自然科学基金项目(15114931)
关键词
独立邻边集
边带宽
树
叶子数
independent adjacent edge- set
edge bandwidth
tree
number of leaves