期刊文献+

时标上一类时滞中立型动力方程的非振动解

Nonoscillatory Solutions for One Netural Dynamic Equation on Measure Chains
下载PDF
导出
摘要 考虑了时标上时滞中立型动力方程(x(t)-cx(t-τ))~Δ+q(t)x(t-σ)=0,其中τ>0,σ≥0为常数,q(t)∈C_(rd)[T,R^+).运用压缩映射原理获得了该方程非振动解存在的充分条件. Considering the neutral delay dynamic equations(x(t)-cx(t-τ))^Δ+q(t)x(t-σ)=0,Where q(t)∈C_(rd)[T,R+),and according to Contraction Mapping theorem, We obtain the sufficient condition for the existence of certain types of solutions of the above equation to be ∫t0 ∞|q(s)|△s〈∞.
作者 刘光辉 王佩
出处 《湖南工程学院学报(自然科学版)》 2016年第2期53-55,共3页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 湖南省教育厅科研资助项目(13C188)
关键词 时标 中立型 振动 时滞 measure chains netural nonoscillatory solution
  • 相关文献

参考文献8

  • 1S. Hilger. Analysis on Measure Chains A Unified Ap- proach to Continuous and Discrete Calculus[J]. Results in Matematics 1990,18: 18-56.
  • 2S. H. Saker. Oscillation of Second order Nonlinear Neu- tral Delay Dynamic Equations on Time Scales [J]. Jour- nal of Computational and Applied Matematics, 2005, 39 (3) : 377-396.
  • 3E. Akin Bohner,J. Hoffacker. Oscillation Properties of an Emden Fower Type Equations on Discrete Time Scales[J]. Diff. Eqns. Appl. , 2003,9 : 603 - 612.
  • 4杨军,张玉静.时标上二阶混合型边值问题的正解存在性[J].应用数学学报,2008,31(4):592-598. 被引量:3
  • 5M. Bohner, J. E. Castillo. Mimetic Methods on Meas- ure Chadynamic ins[J]. Comput. Math. Appl., 2001, 42: 705-710.
  • 6R. P. Agarwal, M. Bohner, S. H. Saker. Oscillation of Second Order Delay Dynamic Equations[M]. Canad. Ap pl. Math. Quart, Accepted for Publication, 2001 : 193 - 199.
  • 7刘光辉,夏文华.测度链上具有多时滞的非线性中立型泛函微分方程的振动性[J].湖南工程学院学报(自然科学版),2011,21(4):35-37. 被引量:3
  • 8刘兰初,刘光辉.测度链上具有正负系数的中立型动力方程的有界解[J].江西师范大学学报(自然科学版),2006,30(4):336-338. 被引量:3

二级参考文献25

  • 1刘兰初,周勇.一类时标非线性微分方程的振动性[J].广西师范大学学报(自然科学版),2005,23(4):46-48. 被引量:9
  • 2Hilger S. Analysis on Measure Chains-a Unified Approach to Continuous and Discrete Calculus. Results Math., 1990, 18:18-56.
  • 3Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhauser, 2001.
  • 4Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhauser, 2003.
  • 5Kaymakcalan B, Lakshmikantham V, Sivasundaram S. Dynamic System on Measure Chains. Dordrecht: Kluwer Academic, 1996.
  • 6Erbe L. Peterson A. Positive Solutions for a Nonlinear Differential Equations on a Measure Chain. Math. Comp. Mode., 2000, 32:571-585.
  • 7Li W T, Liu X L. Eigenwlue Problems for Second-order Nonlinear Dynamic Equations on Time Scales. J. Math. Anal. Appl., 2005, 318:578-592.
  • 8Atici F M, Guseinov G Sh. On Green's Functions and Positive Solutions for Boundary Value Problems on Time Scales. J. Comp. Appl. Math., 2002 141:75-99.
  • 9Hao Z C, Liang J, Xiao T J. Existence Results for Time Scale Boundary Valre Problem. J. Comp. Appl. Math., 2006, 197:156-168.
  • 10Guo D J. Nonlinear Functional Analysis. Jinan: Shandong Technical Publishers, 2001 (in Chinese).

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部