期刊文献+

一种改进算法在焦炉正常推焦过程中的应用

Application of an Improved Algorithm in the Normal Coke Pushing Process of Coke Oven
下载PDF
导出
摘要 焦炉正常推焦过程中存在多个控制参数。通常人工经验法根据参数取值范围选取参数,该方法存在很大的随机性而且难以权衡多个性能指标使得正常推焦过程整体最优。为此,提出一种改进的多目标差分进化算法(IMODEA)。首先,采用了2个自适应性参数缩放比例因子和交叉概率完成变异和交叉操作。其次,提出一种改进的快速非支配排序策略(IFNSS)并利用IFNSS和拥挤度计算共同解决新一代种群选择问题。通过算法性能测试将IMODEA与NSGA-II作了对比,显示了IMODEA在Pareto最优解集空间分布性和收敛性方面更占优势。将IMODEA应用到焦炉正常推焦过程优化模型中,通过实验分析证明了算法的可行性。 There are several control parameters in normal coke pushing process of coke oven. Generally, artificial experience method selects parameters according to the scope of parameter values. However, this method not only has certain randomness in choosing parameters but also can't weigh every performance index to optimize the normal coke pushing process. Therefore, an improved multi-objective Differential Evolution algorithm(IMODEA) is proposed in this paper. First of all, two improved adaptive parameters, scaling factor and crossover probability, are employed to complete the mutation operation and crossover operation. Secondly, an improved fast non-dominated sorting strategy(IFNSS) is put forward to solve the problem of new generation population selection together with congestion degree calculation. Performance comparison of IMODEA to NSGA-II shows that IMODEA has an advantage in spatial distribution of Pareto optimal solution set and convergence of algorithm. IMODEA is applied to normal coke pushing process and its practicability is verified through experimental analysis.
出处 《控制工程》 CSCD 北大核心 2016年第5期756-761,共6页 Control Engineering of China
基金 国家自然科学基金项目(61203021)
关键词 正常推焦 多目标 差分进化 PARETO最优解 Normal coke pushing multi-objective differential evolution pareto optimal solution
  • 相关文献

参考文献16

  • 1马立新,王宏宇.基于非支配解的多目标粒子群无功优化[J].控制工程,2014,21(5):748-752. 被引量:9
  • 2Jarostaw P, Czestaw S, Dominik Z. Optimizing bicriteria flow shop scheduling problem by simulated annealing algorithm [J], Computer Science, 2013, 18(18): 936-945.
  • 3Isolina Alberto, Carlos A. Coello Coello, et al. A comparative study of variation operators used for evolutionary multi-objective optimization [J]. Information Sciences, 2014, 273(8): 33-48.
  • 4Miguel Martinez-Iranzo, Juan M. Herr-ero, Javier S-anchis, et al.. Applied Pareto multi-objective optimization by stochastic solvers [J]. Engineering Applications of Artificial Intelligence, 2009, 22(3): 455-465.
  • 5He X, Pang X, Zhu Di, et al.. Multi-objective reactive power optimization based on chaos particle swarm optimization algorithm [J]. Applied Mechanics and Materials, 2013, 273(10): 835-839.
  • 6Yang W A, Guo Y, Liao W H. Economic and statistical design of and Scontrol charts using an improved multi-objective particle swarm optimization algorithm [J]. International Journal of Production Research, 2012, 50(1): 97-117.
  • 7Yutao Qi, Fang Liu, Meiyun Lin, et al.. Multi-objective immune algorithm with Baldwinian learning [J]. Applied Sot Computing, 2012, 12(8): 2654-2674.
  • 8刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 9Adeyemo J, Otieno F . Differential evolution algorithm for solving multi-objective crop planning model [J]. Agricultural Water Management 2010, 97(6): 848-856.
  • 10Luis V. Santana-Q, Alfredo G. Hernandez-Diaz, Julian-Molina, et al. A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems [J]. Computers&Operations Research, 2010, 370):470-480.

二级参考文献118

共引文献345

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部