期刊文献+

时变转速运行状态下鼠笼电机转子断条故障诊断 被引量:8

Fault diagnosis of broken rotor bars in squirrel cage motor under time-varying rotating speed operation condition
下载PDF
导出
摘要 电机电流信号特征分析(MCSA)是诊断鼠笼电机早期转子断条故障的常用方法。当电机在时变转速状态下运行时,转速和滑差连续变化,定子电流表现为非平稳信号,MCSA不再有效。本文提出一种鼠笼电机时变转速运行状态下的早期转子断条故障诊断新方法。该方法的核心是对定子电流Park矢量模平方信号作离散小波变换,然后根据转子断条故障特征频率2sf在转速连续变化期间的波形演变图谱以及小波能量变化判断故障发生与否。在3k W电机实验台上对所提出的方法进行实验验证,实验结果证实了所提方法的有效性。 Motor current signature analysis (MCSA) has been successfully used in squirrel cage motor for the diagnosis of incipient broken rotor bar defect. However, when the motor operates in time-varying rotating speed condition, the method fails as the rotating speed and slip vary, thus, the stator current is characterized as a non-stationary signal. This paper proposes a novel fault diagnosis method for the incipient broken rotor bar of squirrel cage motor in time-varying rotating speed operation condition. The core of the method is to conduct discrete wavelet transformation on the 3 phase stator current Park' s vector modulus square signal; and according to the waveform evolution spectrum of broken rotor bar fault frequency 2sf characteristic pattern and the wavelet energy changing during the speed continuous variation, it is judged if the broken rotor bar defect occurs. The experiment verification was performed on a 3kw motor experiment test bench; the experiment results prove the effectiveness of the proposed method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第4期834-842,共9页 Chinese Journal of Scientific Instrument
基金 中国科学院重点部署项目(KGZD-EW-302)资助
关键词 鼠笼电机 转子断条 Park矢量模 离散小波变换 故障诊断 squirrel cage motor broken rotor bar Park's vector modulus discrete wavelet transformation (DWT) fault diagnosis
  • 相关文献

参考文献16

二级参考文献96

  • 1李志农,吕亚平,范涛,冷传广.基于经验模态分解的机械故障欠定盲源分离方法[J].航空动力学报,2009,24(8):1886-1892. 被引量:18
  • 2田志勇,张耀,谭继文.基于BP神经网络的钢丝绳断丝定量检测[J].煤炭学报,2006,31(2):245-249. 被引量:22
  • 3陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:56
  • 4肖曦,张猛,李永东.永磁同步电机永磁体状况在线监测[J].中国电机工程学报,2007,27(24):43-47. 被引量:52
  • 5Mohamed EI Hachemi Benbouzid,Kliman G B.What stator current processing-based technique to use for induction motor rotor faults diagnosis[J].IEEE Transactions on energy Conversion,2003,18(2):238-244.
  • 6Wu Sitao,Chow T W S.Induction machine fault detection using SOM-Based RBF neural networks[J].IEEE Trans.on Industrial Electronics,2004,51(1),183-194.
  • 7Hsu J S.Monitoring of defects in induction motors through electromagnetic torque observation[J].IEEE Trans.on Industry Applications,1995,31(5):1016-1021.
  • 8Thomas V V,Vasudevan K,Kumar Jagadeesh V.Online cage rotor fault detection using air-gap torque spectrum[J].IEEE Trans.on Energy Conversion,2003,18(2):265-270.
  • 9Trzynadlowski A M,Ritchie E.Comparative investigation of diagnostic media for induction motors:a case of rotor cage faults[J].IEEE Trans.on Industrial Electronics,2000,47(5):1092-1099.
  • 10Carmona R,Hwang W L,Torresani B et al.Multiridge detection and time-frequency reconstruction[J].IEEE Trans.on Signal Processing,1999,47(2):480-492.

共引文献312

同被引文献59

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部