期刊文献+

基于智能手机TDOA估计的被动声源定位方法与系统实现 被引量:10

Passive acoustic source target positioning method based on smart phone platform TDOA estimation and system implementation
下载PDF
导出
摘要 被动目标监测广泛应用于国防、安全等领域。针对被动声目标监测,首次提出了基于手机平台的被动式声目标定位方法,并设计和开发了原型系统。针对手机间时钟同步对被动式信号到达时间差精度的影响,采用手机内置的麦克风和扬声器发送和接收同步声信号的方式,从而避免了节点间无线同步到声信号采集间的时间延迟不确定性。为了提高信号发送和接收时刻的估计精度,将时间戳信息调制到设定的线性调频声信号,并采用广义互相关方法来实现信号波形检测。进一步,针对被动目标声源的非合作特性,采用统计判决理论和语音活动性检测相结合的方法对观测信号进行联合检波,获得被动目标声源到达时间的高精度估计,即被动声源到手机间的到达时间差。最后,通过多部手机搭建了原型系统并设计实验,结果表明定位误差不超过10%的概率达到80%。 Passive acoustic target monitoring is widely used in national defense, security and other fields. Aiming at passive acoustic target monitoring, a passive acoustic target positioning method based on universal smart phone platform is put forward for the first time, and a prototype system is designed and developed. Aiming at the influence of the clock synchronization among smart phones on the TDOA accuracy of the passive signals, the method of using the phone built-in microphone and speaker to transmit and receive synchroni- zation acoustic signals is adopted, which avoids the time delay uncertainty from the inter-node wireless synchronization to the acoustic signal acquisition. In order to improve the estimation accuracy of signal transmission and receiving time, the time stamp information is modulated into the chirp acoustic signal set previously, and the generalized cross correlation (GCC) method is adopted to achieve the signal waveform detection. Furthermore, aiming at the non-cooperative characteristics of the passive target sound source, a method combining statistical decision theory and Voice Activity Detection (VAD) is adopted to detect the sound wave of the observed signal, achieve high-precision estimation of the arrival time for passive target sound source, i.e. the time difference of arrival (TDOA) between passive sound source and mobile phones. Finally, a prototype system was built based on multiple universal smart phones; experiments were designed and conducted, experiment results show that the probability for the positioning error not greater than 10% reaches 80%.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第4期952-960,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61127901)项目资助
关键词 被动目标定位 通用智能手机 时钟同步 多径效应 线性调频 到达时间差 passive target positioning universal smart phone clock synchronization multipath effect linear frequency modulated (LFM) time difference of arrival(TDOA)
  • 相关文献

参考文献20

  • 1DAMARL T, WHIPPS G, KAPLAN L. Sniper localization for asynchronous sensors [ R ]. Army Research Lab Adelphi MD, 2008.
  • 2KIM U H, MIZUMOTO T, OGATA T, et al. Improvement of speaker localization by considering multipath interference of sound wave for binaural robot audition[ C ]. IEEE/RSJ International Conference on Intelligent Robots andSystems (IROS), 2011: 2910-2915.
  • 3SUR S, WEI T, ZHANG X. Autodirective audio capturing through a synchronized smartphone array [ C ]. Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, 2014: 28-41.
  • 4王沁,何杰,张前雄,刘冰峰,于彦伟.测距误差分级的室内TOA定位算法[J].仪器仪表学报,2011,32(12):2851-2856. 被引量:49
  • 5李元实,王智,鲍明,冯大航,卓书果.基于无线声阵列传感器网络的实时多目标跟踪平台设计及实验[J].仪器仪表学报,2012,33(1):146-154. 被引量:16
  • 6何子述,黄振兴,向敬成.修正MUSIC算法对相关信号源的DOA估计性能[J].通信学报,2000,21(10):14-17. 被引量:64
  • 7李鹏飞,张旻,钟子发.基于稀疏表示的宽带DOA估计[J].电子测量与仪器学报,2011,25(8):716-721. 被引量:10
  • 8MISRA P, JHA S, OSTRY D. Improving the coverage range of ultrasound-based localization systems [ C ]. Wireless Communications and Networking Conference (WCNC), 2011 IEEE. IEEE, 2011: 6054510.
  • 9OBERHOLZER G, SOMMER P, WATTENHOFER R. Spiderbat: Augmenting wireless sensor networks with distance and angle information[ C ]. 10th IEEE Interna- tional Conference on Information Processing in Sensor Networks, 2011 : 211-222.
  • 10LIU K, LIU X, LI X. Guoguo: Enabling fine-grained indoor localization via smartphone [ C ]. Proceeding of the 1 lth Annual International Conference on Mobile Systems, Applications, and Services, 2013 : 235-248.

二级参考文献66

  • 1王意锋,季中恒,葛宝忠.联合卡尔曼法消除无线定位中的非视距误差[J].电子技术应用,2007,33(2):107-109. 被引量:2
  • 2[1] STOICA P,NEHORAI A.MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Trans on ASSP,May 1989,37(5):720-741.
  • 3[2] KAVEH M,BARABELL A J.The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise[J].IEEE Trans on ASSP,April 1986,34(4):331-341.
  • 4[3] SHAN T J,WAX M,KAILATH T.On spatial smoothing for direction-of-arrival estimation of coherent signals[J].IEEE Trans on ASSP,Aug 1985,33:806-811.
  • 5[4] WILLIAMS R T,PRASAD S,MAHALANABIS A K,et al.An improved spatial smoothing technique for bearing estimation in a multipath environment[J].IEEE Trans on ASSP,April 1988,36:425-432.
  • 6[5] TAGA F,SHIMOTAHIRA H.A novel spatial smoothing technique for the MUSIC algorithm[J].IEICE Trans commun,1995,78-B:1513-1517.
  • 7[6] KUNDU D.Modified MUSIC algorithm for estimating DOA of signals[J].Signal Processing,1996,(48):85-89.
  • 8SAMADI S, ETIN M. Sparse representation based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(2): 182-193.
  • 9NAMGOOK C, KUO C C J. Sparse music representation with source-specific dictionaries and its application to signal separation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(2): 326-337.
  • 10DAID D, YANG W. Satellite image classification via two-layer sparse coding with biased image representa- tion[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 173-176.

共引文献162

同被引文献84

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部