期刊文献+

泡桐丛枝和枣疯病植原体tuf基因上游序列结构、功能和遗传变异比较分析 被引量:3

Comparative analysis of structure, function and genetic variation of upstream sequences adjoining tuf gene in paulownia and jujube witches'-broom phytoplasmas
原文传递
导出
摘要 【目的】探究泡桐丛枝和枣疯病植原体tuf基因上游序列结构、功能差异及其遗传多样性。【方法】利用热不对称交错式PCR(TAIL-PCR)扩增枣疯病植原体tuf基因上游未知序列,利用启动子探针载体pSUPV4构建了泡桐丛枝和枣疯病植原体tuf基因上游序列的大肠杆菌异源表达体系,分析泡桐丛枝、苦楝丛枝、莴苣黄化、桑萎缩、长春花绿变等16SrI组和枣疯病、樱桃致死黄化、重阳木丛枝等16SrV组株系tuf基因上游调控序列的遗传变异特征和启动子活性。【结果】泡桐丛枝等16SrI组植原体株系tuf基因和其上游fus A基因之间的间区序列长129-130 bp,预测有完整的启动子保守结构。泡桐丛枝植原体tuf基因上游130 bp片段具有启动子活性,此间区序列在5种35株16SrI组株系中存在4种变异类型;枣疯病植原体等16SrV组株系fusA和tuf基因间区长53-54 bp,未预测到完整启动子结构。枣疯病植原体tuf基因上游144 bp和346 bp片段均未检测到启动子活性,fus A和tuf基因间区序列在3种20株16SrV组株系中存在2种变异类型。fus A-tuf基因间区序列相对保守,基于此序列构建的进化树可清晰区分不同组别的植原体株系。【结论】研究方法和结果为深入研究植原体基因表达与调控、揭示植原体生长繁殖规律及其致病机理等奠定了良好的基础。 [Objective] Exploring the difference of structure, function as well as the genetic diversity of upstream sequences adjoining tuf gene in paulownia and jujube witches'-broom phytoplasmas. [Methods] Thermal asymmetric interlaced PCR (TAIL-PCR) was used to amplify the upstream unknown sequence adjoining tufgene in jujube witches'-broom phytoplasma. Recombinant expression system was successfully constructed with promoter-probe vector pSUPV4 and tuf gene upstream sequences from paulownia and jujube witches'-broom phytoplasma. Genetic variation and promoter activity of tuf gene upstream regulatory sequences from 16SrI group phytoplasma strains including paulownia witches'-broom, chinaberry witches'-broom, lettuce yellows, mulberry dwarf and periwinkle virescence phytoplasma strains and 16SrV group strains including jujube witches'-broom, cherry lethal yellow, Bischofia polycarpa witches'-broom phytoplasma strains were analyzed and identified. [Results] The sequence length of intergenic region between tuf and its upstream gene, fusA, in 16SrI group strains was 129 to 130 bp, with putative complete promoter conservative structure. 130 bp upstream sequence of tufgene in paulownia witches'-broom phytoplasma had promoter activity. There were four variation types in the intergenic region sequences from five kinds of 16SrI group phytoplasmas including 35 strains; the sequence length of intergenic region between fusA and tufin 16SrV group strains was 53 to 54 bp, with predicted incomplete promoter structure. No promoter activity was found in 144 bp and 346 bp upstream sequence of tuf gene in jujube witches'-broom phytoplasma. There were two variation types in the intergenic region sequences from three kinds of 16SrV group phytoplasmas including 20 strains. The fusA-tuf intergenic region sequences were comparatively conservative, and the phytoplasma strains belonging to different groups were distinguished clearly by the phylogenetic tree constructed based on the sequences. [Conclusion] The methods and results of the study would lay a beneficial foundation in further investigating phytoplasma gene expression and regulation, revealing phytoplasma regularity of growth and propagation as well as its pathogenicity mechanism.
出处 《微生物学通报》 CAS CSCD 北大核心 2016年第5期1060-1069,共10页 Microbiology China
基金 国家自然科学基金项目(No.31370644) 国家微生物资源平台项目(No.NIMR2014-7)~~
关键词 植原体 启动子 TAIL-PCR 上游序列 遗传变异 Phytoplasma, Promoter, TAIL-PCR, Upstream sequence, Genetic variation
  • 相关文献

参考文献22

  • 1Sugio A, Hogenhout SA. The genome biology of phytoplasma: modulators of plants and insects[J]. Current Opinion in Microbiology, 2012, 15(3): 247-254.
  • 2Turner P, Mclennan A, Bates A, et al. Instant Notes Molecular Biology[M]. 3rd Edition. Abingdon: Taylor & Francis Group, 2005.
  • 3Palmano S, Kirkpatrick BC, Firrao G. Expression of chloramphenicol acetyltransferase in Bacillus subtilis under the control of a phytoplasma promoter[J]. FEMS Microbiology Letters, 2001, 199(2): 177-179.
  • 4Ishii Y, Kakizawa S, Hoshi A, et al. In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region[J]. Microbiology, 2009, 155(6): 2058-2067.
  • 5胡佳续,宋传生,林彩丽,耿显胜,田国忠.4种植物病害植原体病原质粒全序列测定及分子特征[J].林业科学,2013,49(4):90-97. 被引量:3
  • 60shima K, Kakizawa S, Nishigawa H, et al. Reductiveevolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma[J]. Nature Genetics, 2004, 36(1): 27-29.
  • 7Schneider B, Gibb KS, Seemiiller E. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas[J]. Microbiology, 1997, 143(10): 3381-3389.
  • 8Koui T, Natsuaki T, Okuda S. Phylogenetic analysis of elongation factor Tu gene of phytoplasmas from Japan[J]. Journal of General Plant Pathology, 2003, 69(5): 316-319.
  • 9Malembic-Maher S, Salar P, Filippin L, et al. Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of 'Candidatus Phytoplasma rubi'[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(9): 2129-2134.
  • 10Streten C, Gibb KS. Genetic variation in Candidatus Phytoplasma australiense [J]. Plant Pathology, 2005, 54(1): 8-14.

二级参考文献53

共引文献11

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部