期刊文献+

优化的协同过滤推荐算法 被引量:5

Optimized collaborative filtering recommendation algorithm
下载PDF
导出
摘要 针对传统协同过滤中存在的数据稀疏性和用户偏见性问题进行研究,提出一种基于用户模型的相似度计算方法。通过建立用户偏好主题向量,间接获取用户之间的相似性,克服数据稀疏性对用户相似度计算准确性的影响;基于对用户偏见性的考虑,引入贝叶斯重排序算法,建立项目的信任子群,获取用户对信任子群的局部偏见,通过加权相似用户对目标项目的评分产生推荐。相关实验验证了该方法的可行性,能在有效克服传统协同过滤方法弊端的基础上,提升系统的推荐效果。 Aiming at the problems of data sparsity and users' prejudice of traditional collaborative filtering,a method for similarity calculation based on the user model was proposed.User preferences topic vector was established and the similarity between the users was gained indirectly,the negative effects of data sparsity on accuracy in users' similarity measure were overcome.Based on the consideration of users' prejudice,trusted subgroup of each item was constructed using Bayesian reranking algorithm,the users' local biases about the neighbours in subgroup were got.Recommendation was generated by weighting scores of the target coming from similar users.Experimental results indicate that the proposed algorithm can effectively avoid the disadvantages of traditional methods and improve the system's recommendation quality.
出处 《计算机工程与设计》 北大核心 2016年第5期1259-1264,共6页 Computer Engineering and Design
基金 广西科技攻关基金项目(桂科攻1598019-6) 2014年度广西高校科学技术研究基金项目(LX2014149) 桂林电子科技大学研究生创新基金项目(GDYCSZ2014870)
关键词 推荐系统 协同过滤 相似性度量 用户偏见性 贝叶斯重排序 recommender system collaborative filtering similarity measure user prejudice Bayesian reranking
  • 相关文献

参考文献26

  • 1Sarwar B, Karypis G, Konstan J, et al. Item-based collabora- tive filtering recommendation algorithms [C] //Proceedings of the lOth International Conference on World Wide Web. Paris: IEEE Computer Society Press, 2011: 285-295.
  • 2Ma Z, Leijon A. A model-based collaborative filtering method for bounded support data [C] //3rd IEEE International Con- ference on Network Infrastructure and Digital Content, 2012: 545-548.
  • 3Bellogin A, Castdls P, Cantador I. Improving memory-based col- laborative filtering by neighbour selection based on user preference overlap [C] //Proceedings of the 10th Conference on Open Re- search Areas in Information Retrieval, 2013: 145-148.
  • 4Ungar LH, Foster DP. Clustering methods for collaborative fil- tering[C] //Proceedings of AAAI Workshop on Recommenda tion Systems. AAAI Press, 1998: 84-88.
  • 5Li X. Collaborative filtering recommendation algorithm based on cluster [C]//International Conference on Computer Science and Network Technology. IEEE, 2011: 2682-2685.
  • 6. Liu Q, Chen E, Xiong H, et al. Enhancing collaborative filte- ring by user interest expansion via personalized ranking [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42 (1): 218-233.
  • 7Salakhutdinov R, Mnih A. Probabilistic matrix factorization [J]. Nips, 2012: 1854-1858.
  • 8Zhao J, Huang J X, Hu X. BPLT+: A Bayesiawbased per sonalized recommendation model for health care [J]. Bmc Ge- nomics, 2013, 14 (2): 179-202.
  • 9Wang Z, Zhang M, Tan Y, et al. Recommendation algorithm based on graph-model considering user background information [C] //Ninth International Conference on Creating, Connecting and Collaborating through Computing. IEEE Computer Socie- ty, 2011: 32-39.
  • 10Chen D. A collaborative filtering recommendation algorithm based on user information [J]. Lecture Notes in Electrical Engineering, 2011: 993-998.

二级参考文献85

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献1031

同被引文献37

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部