期刊文献+

C4.5算法的优化 被引量:15

Optimization of C4.5 algorithm
下载PDF
导出
摘要 对传统C4.5算法的运算效率和属性选择准确性进行研究,对其进行改进。运用泰勒级数和等价无穷小的原理对算法的计算公式进行简化,提高运算效率;在简化后的信息增益率计算公式中引入其它非类属性对于该属性的GINI指数的均值,用于调整因非类属性间冗余度问题导致的误差,提高算法属性选择的准确性,将改进后的算法称为G_C4.5。对G_C4.5、传统C4.5算法与其它改进算法进行对比实验分析,分析结果表明,G_C4.5算法在分类效率和准确性上都有一定提高。 After researching the computing efficiency and attribute selection accuracy of traditional C4.5algorithm,some improvements were implemented.The calculation formula was simplified using the principle of Taylor series and equivalent infinitesimal,the efficiency of calculation was improved.The average value of GINI index of non-class attributes for this attribute was introduced to the simplified formula of information gain rate,the deviation caused by the redundancy between non-class attributes was adjusted,and the accuracy of the attribute selection was improved.The improved algorithm was named as G_C4.5.G_C4.5algorithm was contrasted with traditional C4.5algorithm and its other improved algorithms,results show that G_C4.5algorithm improves the classification efficiency and the classification accuracy.
作者 黄秀霞 孙力
出处 《计算机工程与设计》 北大核心 2016年第5期1265-1270,1361,共7页 Computer Engineering and Design
关键词 C4.5算法 泰勒级数 等价无穷小 GINI指数的均值 非类属性间关联性 G_C4.5算法 C4.5algorithm Taylor series equivalent infinitesimal average of GINI index correlation between non-class at tributes G_C4.5 algorithm
  • 相关文献

参考文献11

二级参考文献35

  • 1刘鹏.一种健壮有效的决策树改进模型[J].计算机工程与应用,2005,41(33):172-175. 被引量:5
  • 2丁智斌,袁方,董贺伟.数据挖掘在高校学生学习成绩分析中的应用[J].计算机工程与设计,2006,27(4):590-592. 被引量:44
  • 3李强.创建决策树算法的比较研究——ID3,C4.5,C5.0算法的比较[J].甘肃科学学报,2006,18(4):84-87. 被引量:51
  • 4Quinlan J R.Induction of decision trees[J].Machine Learning, 1986, 1:81-106.
  • 5Quinlan J R.C 4.5:program for machine learning.San Marteo:Mor-gan Kaufmann Publisher-s,1993:21-31.
  • 6Kothari R,Dong M.Decision Trees for Classification:A review and some new results.In:Pal R S,Pal N R,Eds.Lecture Notes in Pattern Recognition,Singapore,World Scientific Publishing Company,2001.
  • 7HANJ KAMBERM.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 8Witten I H,Frank E.数据挖掘实用机器学习技术[M].北京:机械工业出版社,2006
  • 9Cover T M,Thomas J A,阮吉寿,等.信息论基础[M].北京:机械工业出版社,2005.348-354.
  • 10Han Jiawei,Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.

共引文献102

同被引文献123

引证文献15

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部