期刊文献+

模糊统计耦合子直方图加权均衡化的图像增强 被引量:6

Image enhancement based on fuzzy statistical coupling sub-histogram weighted equalization
下载PDF
导出
摘要 基于直方图均衡化的图像增强算法易出现过渡增强与棋盘效应,难以保持图像亮度,导致失真等不足,为此提出一种模糊统计耦合子直方图均衡化的抗失真图像对比度增强算法。引入模糊集理论,将图像转变成模糊矩阵;通过隶属度函数与图像灰度水平呈现的概率,嵌入加权函数,构造加权模糊直方图计算模型;利用初始图像的中值,将模糊直方图分割为两个子直方图,定义累积密度函数,构造其变换模型;建立逆变换函数,对其完成解模糊化,输出增强图像。实验数据表明,与当前基于直方图均衡化的图像增强算法相比,该算法显著消除了过度增强与噪声放大,具有更佳的增强视觉质量与抗失真性能,其平均信息内容AIC(average information contents)值最大,自然图像质量评估值NIQE(natural image quality evaluator)最小。 To solve these defects such as difficult to maintain image brightness,prone to transition enhancement and checkerboard effect resulting in distortion in current image enhancement algorithm based on histogram equalization,the anti-distortion image contrast enhancement algorithm based on fuzzy statistical coupling sub-histogram equalization was proposed.The image was transformed into fuzzy matrix using the membership function and the pixel intensity.The fuzzy histogram calculation model was constructed by introducing the fuzzy set theory.The fuzzy histogram was divided into two sub-histograms,and transformation model was designed by defining the cumulative density function.The inverse transformation function was established to defuzzify for outputting the enhancement image.The experimental results show that this algorithm significantly eliminates the excessive enhancement and noise amplification with better visual quality and anti-distortion performance for the maximum value of average information content and minimum value of natural image quality assessment.
出处 《计算机工程与设计》 北大核心 2016年第5期1319-1324,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61163015) 内蒙古自然科学基金项目(2013MS0921)
关键词 图像对比度增强 模糊集理论 加权函数 子直方图均衡化 模糊矩阵 模糊直方图 累积密度函数 image contrast enhancement fuzzy set theory weight function sub-histogram equalization fuzzy matrix fuzzy histogram cumulative density functions
  • 相关文献

参考文献13

二级参考文献39

  • 1于天河,郝富春,康为民,戴景民.红外图像增强技术综述[J].红外与激光工程,2007,36(z2):335-338. 被引量:59
  • 2李文永,顾国华.一种红外弱小目标图像增强的新算法[J].红外,2006,27(3):17-20. 被引量:8
  • 3梅跃松,杨树兴,莫波.基于Canny算子的改进的图像边缘检测方法[J].激光与红外,2006,36(6):501-503. 被引量:30
  • 4(美)冈萨雷斯.数字图像处理[M].2版.阮秋琦,译.北京:电子工业出版社,2007.
  • 5ZAAFOURI A, SAYADI M, FNAIECH F. A developed unsharp masking method for images contrast enhancement [ C ]. 8th International Multi - Conference on Systems, Signals and Devices. New York:IEEE, 2011 : 1 -6.
  • 6刘晶,秦远辉,杨楚平,等.基于最大熵的水下图像模糊增强算法[C].2007系统仿真技术及其应用学术会议论文集.合肥:中国科技大学出版社,2007:990-992.
  • 7BURT P J, ADELSON E H. Merging images through pattern decomposition [ C ]. SPIE Applications of Digital Image Processing. SPIE, 1985,575 : 173 - 182.
  • 8AHEAM S C. Combining Laplacian images of different spatial frequencies (scales) implications for remote sensing image analysis [ J ]. IEEE Trans on Geoscience and Remote Sensing, 1988, 26(6) : 826 -831.
  • 9Kenneth RCastleman. Digital image processing [ M ]. Bei- jng: Publishing House of Electronics Industry, 1998.
  • 10I Maria Petrou. Image processing the fundamental [ M ]. Beijing: China Machine Press ,2005.

共引文献93

同被引文献56

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部