期刊文献+

融合腿部局部特征的步态识别方法 被引量:4

Gait recognition method with local feature of legs region
下载PDF
导出
摘要 为提高步态识别的识别率,提出一种基于腿部轮廓区域与整体图像的特征相结合的步态识别算法。通过选取训练样本的整体散布矩阵的非负特征值对应的特征向量,组成一个维数较低的变换空间;在此空间中,为克服小样本问题,对每类样本的协方差矩阵增加一个正则项,构成新的准则函数,通过求解该优化问题,选择部分特征向量组成特征矩阵;基于此种方法,将获得的腿部轮廓区域特征和整体图像的特征进行组合,表示一个行人步态的特征。实验选取中科院步态数据库CASIA A、CASIA B和CASIA C,结合最小距离分类器进行步态识别。实验结果表明,当影响识别的因素发生改变时,例如背包、穿外套等,所提方法能够获得较高识别率。 To improve the results of gait recognition,the gait recognition method based on the feature combination of gait image and its region bounded by legs was proposed.All the eigenvectors corresponding to nonnegative eigen values of the entire scatter matrix of training samples were selected to compose a lower-dimension transform space.In this transform space,to overcome the small-sample-size problem,a regularization term was added to each sample class covariance matrix,and a new criterion function was established.By computing this optimization problem,and the eigen matrix was made up by some eigen vectors.Based on this method,the features of gait image and its region bounded by legs were combined to represent gait features.In the experiments,three gait databases CASIA A,CASIA B and CASIA C were selected and the minimum distance classifier was used to verify the effectiveness of presented method.Experimental results show that when the factors changes,such as walking with bag,the presented method gets better results.
作者 李凯 王国超
出处 《计算机工程与设计》 北大核心 2016年第5期1340-1345,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61375075)
关键词 步态识别 步态能量图像(GEI) 腿部轮廓区域(RBL) 特征组合 正则项 gait recognition gait energy image(GEI) region bounded by legs(RBL) feature combination regularization term
  • 相关文献

参考文献11

  • 1Zheng S, Huang KQ, Tan TN, et al. A cascade fusion scheme for gait and cumulative foot pressure image recognition [J]. Pattern Recognition, 2012, 45 (10): 3603-3610.
  • 2Hu HF. Enhanced gabor feature based classification using a regularized locally tensor discriminant model for multiview gait recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23 (7): 1274-1286.
  • 3Zhang L, Zhang L, Tao D, et al. A sparse and discriminative tensor to vetor projection for human gait feature representation [J]. Signal Processing, 2015, 106: 245-252.
  • 4Bashir K, Xiang T, Gong SG. Gait recognition without sub- ject cooperation [J]. Pattern Recognition Letter, 2010, 31 (13) : 2052-2060.
  • 5Choudhury SD, Tjahjadi T. Robust view-invariant multiscale gaitrecognition [J]. Pattem Recognition, 2015, 48: 798-811.
  • 6Roy A, Sural S, Mukherjee J. Gait recognition using pose ki- nematics and pose energy image [J]. Signal Processing, 2012, 92 (3): 780-792.
  • 7Guo BF, Nixon MS. Gait feature subset selection by mutual information [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2009, 39 (1): 36-46.
  • 8Mohan Kumar HP, Nagendraswamy HS. LBP for gait recogni- tion: A symbolic method based on GEI plus tlBL of GEI [C] //International Conference on Electronics and Communica- tion Systems, 2014: 1-5.
  • 9Kusakunniran W, Wu Q, Zhang J, et al. Gait recognition un- der various viewing angles based on correlated motion regression [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22 (6): 966-980.
  • 10Lu JW, Plataniotis KN, Venetsanopoulos AN. Regulariza- tion studies of linear discriminant analysis in small sample size scenarios with application to face recognition [J]. Pattem Recognition Letters, 2005, 26 (2): 181-191.

同被引文献51

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部