期刊文献+

M次微分下多目标优化问题的最优性条件

Optimality Conditions for Multiobjective Optimization Problems in Terms of the M Subdifferential
原文传递
导出
摘要 主要考虑了一类带有不等式约束的非光滑多目标优化模型。在多目标优化的研究过程中,解的最优性条件一直是众多学者关注的内容。而对于非光滑多目标优化问题,利用广义微分的概念对其进行研究是非常有意义的研究课题。经典的广义微分工具包括Clarke广义梯度、Mordukhovich次微分等等。利用Mordukhovich次微分的概念对多目标优化问题解的最优性条件进行推广,其中Mordukhovich次微分简记为M次微分。利用Mordukhovich伪凸的概念,建立了在M次微分意义下多目标优化问题弱有效解的必要充分最优性条件及其有效解的充分最优性条件。同时引入了M次微分意义下的线性化锥,并且利用该线性化锥构造了一个有效解的最优性条件的等价描述。最后对非光滑多目标优化的后续研究工作提出了一些可扩展的研究内容和问题。 Throughout this paper,we consider the nonsmooth multiobjective programming problem with inequality constraints.In the studying of the multiobjective programming problem,many researchers focus on the optimality of the solutions.What's more,for the nonsmooth multiobjective programming problem,it is meaningful to discuss in the term of the generalized differential.The classical generalized differential tools include the Clarke subdifferential and the Mordukhovich's subdifferential.In our paper,we mainly use the Mordukhovich's subdifferential to study the nonsmooth multiobjective programming problem.The M subdifferential is short of the Mordukhovich's subdifferential.In this paper,we introduce the definition of the Mordukhovich's pseudoconvex.Then the necessary and sufficient optimality condition of the weak efficiency solutions and the sufficient optimality condition of the efficiency solutions are given.What's more,we introduce the concept of the linearizing cones by using the Mordukhovich's subdifferential and propose an equivalent description of the efficient solutions'optimality condition with it.Finally,we give some further research problems for following study.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期1-5,共5页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11431004 No.11301574 No.11271391) 重庆市基础与前沿研究计划项目(No.cstc2015jcyjA00027) 重庆市教委科学技术研究项目(No.KJ1500303)
关键词 M次微分 非光滑多目标优化 最优性条件 M subdifferential nonsmooth multiobjective programming optimality conditions
  • 相关文献

参考文献11

  • 1Winkler K. A characterization of efficient and weakly effi cient points in convex vector optimization[J]. SIAM Jour-nal on Optimization, 2008,19 (2) : 756-765.
  • 2Zhao K Q. Strong Kuhn-Tucker optimality in nonsmooth multiobjective optimization problems[J]. Pacific Journal of Optimization, 2015,11(3) :483-494.
  • 3Zhao K Q, Yang X M. Characterizations of efficient and weakly efficient points in nonconvex vector optimization [J]. Journal of Global Optimization, 2015,61 (3) : 575-590.
  • 4Jahn J. Vector optimization[M]. New York: Springer-Vet- lag,2004.
  • 5Mordukhovich B S. Variational analysis and generalized dif- ferentiation I: basic theory [M]. Berlin: Springer-Verlag, 2006.
  • 6Clarke F H. Optimization and nonsmooth analysis[M]. New York : Wiley, 1983.
  • 7Rockafellar R T, Wets R J. Variational analysis[M]. Ber- lin : Springer-Verlag, 1998.
  • 8Fan L,Liu S,Gao S. Generalized monotonicity and convexi- ty of non-differentiable functions[J]. Journal of Mathemati- cal Analysis and Applications, 2003,279 (1) : 276-289.
  • 9Rockafellar R T. Convex analysis[M]. New York: Prince- ton University Press, 1970.
  • 10Maeda T. Constraint qualifications in multiobjective opti- mization problems: differentiable case[J]. Journal of Opti- mization Theory and Applications, 1994,80 (3) : 483-500.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部