期刊文献+

超声左心耳图像的轮廓自动提取

Automatic Contour Extraction of Left Atrial Appendage from Ultrasound Images
下载PDF
导出
摘要 针对经食道超声左心耳图像的分辨率低、对比度低、含有斑点噪声等问题,提出一种结合左心耳解剖位置和超声图像灰度及相位信息的方法,全自动定位常规切片中的左心耳。首先,根据医生采集习惯,以左心耳在标准切面中的解剖位置为先验知识,结合其灰度特性,自动确定分割模型中的初始轮廓;然后,通过线型加权相位和梯度信息构造新的外力项,改进向量场卷积模型,完成左心耳轮廓的自动提取。300张左心耳超声图片测试结果表明,以医生手动勾勒的轮廓作为"金标准",该方法自动提取左心耳的准确性为0.896 9±0.049 4、敏感性为0.905 8±0.076 2、特异性为0.964 5±0.168 7。分割效果优于传统的向量场卷积模型,能够解决自动定位超声图像中左心耳的初始轮廓和弱边界分割的问题。 In order to fulfil the contour extraction of left atrial appendage (LAA) from the low resolution, low contrast and noisy transesophageal ultrasound images automatically, a new method was proposed, which combined the anatomical knowledge of LAA and the information of intensity and phase in ultrasound images. Firstly, to locate the effective initial contour with the characteristic of intensity and geometry from LAA ultrasound images, the anatomy location of LAA in the standard section was taken as the priori-knowledge based on the physicians' collecting habit. Then, to improve the convergence performance of classical vector filed convolution (VFC) model, a new external force term was proposed by combing phase and gradient information in the linear weighting method. The test results conducted from 300 frames showed that this method can reach the accuracy of 0. 896 9± 0. 049 4, sensitivity of 0. 905 8 ± 0. 076 2 and specificity of 0. 964 5 ± 0. 168 7 by regarding the contours outlined by physicians as "golden standard". Comparison with traditional VFC model showed that this method owns better segmentation performance by determining a more suitable initial contour and is more robust to weak edge.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第3期87-93,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 四川省科技支撑计划资助项目(2014sz0004-8)
关键词 超声图像 左心耳 自动定位 改进的向量场卷积模型 相位信息 ultrasound images left atrial appendage automatically locate improved VFC model phase information
  • 相关文献

参考文献2

二级参考文献24

  • 1肖志涛,国澄明,侯正信,于明.图像特征检测算法的分析与研究[J].中国图象图形学报(A辑),2004,9(12):1414-1420. 被引量:10
  • 2陈宝林.最优化理论与算法[M].北京:清华大学出版社,1998..
  • 3Wooten W L, Hodgins J K. Animation of human diving. European Association for Computer Graphics Forum, 1996, 15(1): 3~13
  • 4Storvik G. A Bayesian approach to dynamic contours through stochastic sampling and simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(10): 976~986
  • 5Mathurin R, Rottembourg B. A combinatorial approach for rain cell tracking. In: Proceedings of the 12th International Conference and Workshops on Applied Geologic Remote Sensing, Denver, USA, 1997. 3240~3252
  • 6Peterfreud N. The velocity snake: Deformable contour for tracking in spatio-velocity space. International Conference on Computer Vision and Image Understanding, 1998, 73(3): 346~356
  • 7Takahashi Kazuhiko, Sakaguchi Tatsumi, Ohya Jun. Real-time estimation of human body postures using kalman filter. In: Proceedings of the 8th International Workshop on Robot and Human Interaction, Pisa, Italy, 1999. 211~220
  • 8Nickels Kevin, Hutchinson Seth . Model-based tracking of complex articulated objects. IEEE Transactions on Robotics and Automation, 2001, 17(1): 28~36
  • 9Jr T S D, Prince J L. Optimal brightness functions for optical flow estimation of deformable motion. IEEE Transactions on Image Processing, 1994, 3(2): 178~191
  • 10Duncan J S,Owen R L, Staib L H, Anandan P. Measurement of non-rigid motion using contour shape descriptors. In:Proceedings of IEEE Computer Vision & Pattern Recognition, Maui, HI, 1991,18T: 318~324

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部