期刊文献+

基于相似理论的锂电池三维电化学跨尺度建模 被引量:2

Three-dimension Multi-scale Electro-chemical Model for Lithium-ion Battery Based on Similarity Theory
下载PDF
导出
摘要 从抛物线型偏微分方程基本形式出发,利用量纲为一分析法推导了抛物线型偏微分方程的相似准则,并推广得到电化学过程的相似准则,从而确定原型与模型之间的电化学过程参数相似关系.利用Comsol Multiphysics软件进行了锂离子电池单元电化学过程的有限元建模与计算,验证了所建立相似准则和相似关系的正确性.模型验证结果表明电化学有限元建模方法能实现锂离子电池三维电化学过程的一致模拟,同时,高倍率充放电工况下电池内部不均匀性加剧,导致传统的通用准二维模型预测结果具有较大误差.因此,在电池单体设计及系统集成与管理过程中,有必要对基于准二维模型的状态估计算法进行修正,以避免电池局部过充过放而导致安全隐患. A dimensional analysis method was performed to derive similarity criteria and the similarity coefficients of parabolic partial differential equation, and then it was further generalized to deduce the similarity coefficients of the electrochemical process. To validate the similarity criteria and the similarity coefficients, three-dimension finite element models of electrochemical process of lithium ion battery under specified conditions were established with the software of Comsol Multiphysics. The simulation results show that the similarity criteria and the similarity coefficients are certified to be correct and the modelling method based on the similarity theory can achieve equivalent simulation. Moreover, the simulation results reveal that the inner state of the battery tends to be uneven under high rate operation, thus corresponding measurements in design and management based on conventional Pseudo-2D model should be modified to avoid safety issues due to a local over-charge or over-discharge.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期605-613,共9页 Journal of Tongji University:Natural Science
基金 国家"九七三"重点基础研究发展计划(2011CB711201)
关键词 锂离子电池 电化学 相似理论 lithium ion battery electro-chemical field similarity theory
  • 相关文献

参考文献19

  • 1Salvadori A, Bosco E, Grazioli D. A computational homogenization approach for Li-ion battery cells: part 1- formulation [J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 114.
  • 2黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2011.
  • 3郭伟春,付艳恕,王丹,张庭芳,李中立.车载锂离子电池放电性能影响因素研究[J].电源技术,2013,37(3):372-375. 被引量:5
  • 4Franco A A. Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges[J]. RSC Advances, 2013, 3(32): 13027.
  • 5Wu W, Xiao X, Huang X. The effect of battery design parameters on heat generation and utilization in a Li-ion cell [J]. ElectrochimicaActa, 2012, 83: 227.
  • 6Hu X, Li S, Peng H. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359.
  • 7Han X, Ouyang M, Lu L, et al. Simplification of physics- based electrochemical model for lithium ion battery on electric vehicle. Part I: Diffusion simplification and single particle model[J]. Journal of Power Sources, 2015,278:802.
  • 8Guo M, Sikha G, White R E. Single-particle model for a lithium-ion cell., thermal behavior [J]. Journal of The Electrochemical Society, 2011, 158(2): 122.
  • 9Fuller T F. Simulation and optimization of the dual lithium ion insertion cell [J]. Journal of The Electrochemical Society, 1994, 141(1): 1.
  • 10Doyle M, Newman J, Gozdz A S, et el. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890.

二级参考文献42

  • 1ZHANG S S, XU K, JOW T R. Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery[J].Journal of Power Sources, 2006 (160): 1403-1409.
  • 2FLECKENSTEIN M, BOHLEN O, ROSCHER M A,et al. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients [J]. Journal of Power Sources. 2011. 196: 4769-4778.
  • 3ZHANG S S, XU K, JOW T R.The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003,115: 137-140.
  • 4Keyser M, Mihalic M, Pesaran A. Thermal characterization of plastic lithium ion cells. In: The 18th International Seminar and Exhibit on Primary and Secondary Batteris. Fort Lauderda: Advanced Battery Technology, 2001.
  • 5Xiao, X, Wu W, Huang X. A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery. J Power Sources, 2010, 195:7649-7660.
  • 6Golmon S, Maut K, Dunn M L. Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries. Comp Strnct, 2009, 87:1567-1579.
  • 7Shi D, Xiao X, Huang X, et al. Modeling stresses in the separator of a pouch lithium-ion cell. J Power Sources, 2011, 196:8129-8139.
  • 8Farrington M D. Safety of lithium batteries in transportation. J Power Sources, 2001, 96:260-265.
  • 9Wu W, Xiao X, Shi D. Heat Transfer and Thermal Stress in a Lithium-Ion Battery. In: Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition. Vancouver: ASEM, 2010. IMECE2010-37870.
  • 10Renganathan S, Sikhaa G, Santhanagopalanb S, et al. Theoretical Analysis of Stresses in a Lithium Ion Cell. J Electrochem Soc, 2010, 157: 155-163.

共引文献9

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部