期刊文献+

深度信念网络的Bottleneck特征提取方法 被引量:3

A Bottleneck feature extraction method based on deep belief network
下载PDF
导出
摘要 为了提升连续语音识别系统的识别率,提出一种基于深度信念网络的Bottleneck特征提取方法。该方法使用对比散度算法,采用无监督的预训练堆叠限制玻尔兹曼机得到网络初始化参数,进而采用反向传播算法,以最大化帧级交叉熵作为训练准则,反向迭代对网络参数进行微调。采用上下文相关的三音素模型,以音素错误率大小作为评价系统性能的准则。实验结果表明,所提出的基于深度信念网络提取的Bottleneck特征相对于传统特征更具优越性。 In order to improve the speech recognition rate, a Bottleneck feature extraction method based on deep belief net work is proposed. The unsupervised pre-training stacking restricted Boltzmann machine is used to obtain network initializa tion parameters by using the contrastive divergence algorithm. And then the back propagation algorithm is adopted, the frame level cross entropy is maximized as the training criterion, the inverse iteration is used to fine tune the network parame- ters. The context dependent triphone model is adopted to get the better features. The phone error rate is used to evaluate the performance of the system. Experimental results show that the Bottleneck feature is better than the traditional features.
出处 《桂林电子科技大学学报》 2016年第2期118-122,共5页 Journal of Guilin University of Electronic Technology
基金 广西自然科学基金(2012GXNSFAA053221) 广西千亿元产业产学研用合作项目(信科院0618)
关键词 连续语音识别 深度信念网络 Bottleneck特征 音素错误率 continuous speech recognition deep belief network Bottleneck feature PER
  • 相关文献

参考文献8

  • 1陈雷,杨俊安,王一,王龙.LVCSR系统中一种基于区分性和自适应瓶颈深度置信网络的特征提取方法[J].信号处理,2015,31(3):290-298. 被引量:9
  • 2GREZL F,FOUSEK P. Optimizing bottleneck feature for LVCSR[C]//IEEE International Conference on Acouslics, Speech and Signal Processing,2008 :4729-4732.
  • 3杨俊安,王一,刘辉,李晋徽,陆俊.深度学习理论及其在语音识别领域的应用[J].通信对抗,2014,33(3):1-5. 被引量:9
  • 4LI Deng. An overviewof deep-structured learning for in formation processing[C]//Proceedings of the Asian Pa- cific Signal and Information Processing-Annual Summit and Conference,2011 : 1-4.
  • 5HINTON G E,SALAKHUTDINOV R N R. Reducing the dimensionality of data with neural networks[J]. Sci- ence,2006,313(5786) :504-507.
  • 6YU D,SELTZER M L. Improved bottleneck features u- sing pretrained deep neural network [C]//INTER SPEECH, 2011: 237-240.
  • 7HINTON G E, OSINDERO S, TEH Y W. The fast learning algorithm for deep nets [J]. Neural Computa- tion,2006,18(7) :1527- 1554.
  • 8BAO Yebo,JIANG Hui,LIU Cong, et al. Investigation on dimensionality reduction of concatenated features with deep neural network for LVCSR systems[C]// Proceedings of the IEEE llth International Conference on Signal Processing,2012 :562-566.

二级参考文献13

  • 1Tai Sing Lee,David Mumford,Richard Romero,Victor A.F. Lamme.The role of the primary visual cortex in higher level vision[J].Vision Research.1998(15)
  • 2Hinton G, Salakhutdinov R. Reducing the Dimensionality of Data with Neural Networks [ J ]. Science 2006, 313 (5786): 504-507.
  • 3Li Deng, Dong Yu. Deep Learning for Signal and Infor- mation Processing. Microsoft Research. 2013.
  • 4Li Deng. An Overview of Deep-Structured Learning for In- formation Processing[ C ]//Proceedings of the Asian-Pacif- ic Signal and Information Processing-Annual Summit and Conference, Xian, China, 1-14.
  • 5October 2011. Krizhevsky A, Hinton G. Learning Multiple Layers of Fea- tures from Tiny Images [ C ]//Computer Science Depart- merit, University of Toronto,Tech. Rep. 2009.
  • 6Dong Yu, Seltzer M. Improved Bottleneck Features Using Pretrained Deep Neural Networks [ C ] ///Proceedings of INTERSPEECH 2011, Italy, 237-240, August 2011.
  • 7Mohamed A, Hinton G, Penn G. Acoustic modeling using deep belief networks. Audio, Speech, and Language Pro- cessing[ J ]. IEEE Transactions on, 2012,1 (20) : 14-22.
  • 8Veselr K, Ghoshal A, Burget L, Povey D. Sequence-dis- criminative training of deep neural networks [ C ] //[N- TERSPEECH. 2013,8.
  • 9Nguyen P, Kuhn R, Junqua J C, Niedzielski N. Rapid speaker adaptation in eigenvoice space [ J ]. IEEE Trans- actions on Speech and Audio Processing, 2000, 8 ( 6 ) : 695 -707.
  • 10Siniscalchi S M, Dong Yu, Li Deng, Chin-Hui Lee. Speech Recognition Using Long-Span Temporal Patterns in a Deep Network Mode. IEEE Signal Processing Let- ters. 2013 : 20 ( 3 ) :201 - 204.

共引文献16

同被引文献30

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部