期刊文献+

固定翼无人机定点飞行最优路径选择 被引量:5

Selection of the Optimal Path for Established Flight Mission of Fixed-wing UAV
下载PDF
导出
摘要 针对固定翼无人机路径规划复杂、航迹冗余、偏离度高等特点,通过建立三维空间空气动力学模型,标定预置坐标,根据常规气动布局下的空气动力学原理、PID算法、环境等因素对航迹网格点进行管理。采用改进的动态规划算法,对如何准确、快速地计算出连贯预定坐标的最佳路径进行了研究。飞控计算机通过动态对比、状态预测算法,对路径进行实时对比、矫正、重新规划,使无人机能沿着贯穿预定坐标的最佳路径完成既定飞行任务。 For the features of fixed - wing UAV, e. g. , complex path planning, redundant flight track, and high degree of deviation, through setting up the aerodynamics model of three - dimensional space, calibrating the preset coordinates, and according to the factors of aerodynamic principle, PID algorithm, and environment under conventional aerodynamic layout, the flight track grid points are managed. With the improved dynamic planning algorithm, the method for accurately and quickly calculating the optimal path of coherence predetermined coordinates is researched. The paths are compared, corrected and re - planned in real time by flight control computer through dynamic contrast and state prediction algorithms, thus the UAV can accomplish the established flight mission along the optimal path with predetermined coordinates.
作者 梁爽
出处 《自动化仪表》 CAS 2016年第5期13-15,共3页 Process Automation Instrumentation
关键词 无人机 固定翼 航迹优化 最优路径 预定坐标 空气动力学模型 PID 状态预测 动态对比 Unmanned - aerial - vehicle ( UAV ) Fixed - wing Flight track optimization Optimal path Predetermined coordinate Aerodynamic models PID State prediction Dynamic contrast
  • 相关文献

参考文献6

二级参考文献37

  • 1Dijkstra E W. A note on two problems in connection with graphs[J].Numer. Math., 1959, 1:269-271.
  • 2Nakanishi I, Yamaguchi K. A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure[J]. J. Phys. Earth, 1986, 34:195-201.
  • 3Moser T J. Shortest path calculation of seismic rays[J]. Geophysics,1991, 56(1): 59-67.
  • 4Klimes L, Kvasnicha M. 3-D network ray tnlcing[J], Geophys. J.Int., 1994, 116:726-738.
  • 5Zhang J,Toksoz M N. Nonlinear refraction traveltime tomography[J].Geophysics, 1998, 63:1726- 1737.
  • 6Moser T J, Van Eck T, Nolet G. hypocenter determination in strongly heterogeneous earth models using the shortest path method[J]. J. Geophys. Res., 1992, 97:6563 -6572.
  • 7Fischer R,Lees J M. Shortest path my tracing with sparse graphs[J].Geophysics, 1993, 58:987-996.
  • 8Van Avendonk H J A, Harding A J, Orcutt J A, Holbrook W S. Hybrid shortest path and ray bending method for traveltime and raypathc calcuations[J]. Geophysics, 1982,66(2) :648 - 653.
  • 9Johnson D B. Efficient algorithms for shortest paths in sparse networks[J]. Journal of the ACM, 1977, 24:1-13.
  • 10Gallo G, Pallottino S. Shortest path methods:A unifying approach[J]. Mathematical Programming Study, 1986, 26:38 - 64.

共引文献134

同被引文献44

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部