期刊文献+

具有Hassell-Varley型反应函数的捕食者-食饵系统的随机建模

Stochastic Modeling on a Predator-Prey System with Hassell-Varley Type Response Function
下载PDF
导出
摘要 基于具有Hassell-Varley型功能反应函数的确定性捕食系统建立了两类新的随机捕食者-食饵模型:连续时间马尔科夫链模型和伊藤型随机微分方程模型.分析了不同形式的出生率和死亡率对模型动力学的影响,并通过数值模拟讨论了模型的渐近性态. Based on a deterministic predator-prey system with Hassell-Varley type response function,two new stochastic predator-prey models,a continuous time Markov chain model and an Ito type stochastic predator-prey model were established.The influences of different forms of birth and death rate on the dynamics of the model were analyzed.Using numerical simulations,the asymptotic behaviors of the models were discussed.
出处 《上海理工大学学报》 CAS 北大核心 2016年第2期103-108,共6页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11271260) 上海市教委科研创新重点项目(13ZZ116) 沪江基金资助项目(B14005) 上海市一流学科建设资助项目(XTKX2012)
关键词 捕食者-食饵模型 Hassell-Varley型反应函数 连续时间马尔科夫链 随机建模 predator-prey model Hassell-Varley response function continuous time Markov chain stochastic modeling
  • 相关文献

参考文献12

  • 1Walley G S. The Odonata of Canada and Alaska[J]. The Canadian Entomologist, 1959,91 (5) : 291 - 292.
  • 2Bectdington J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975,44 (1) : 331 - 340.
  • 3Crowley P H, Martin E K. Functional responses and interference within and between year classes of a dragonfly population [J]. Journal of the North American Benthological Society, 1989,8(3) : 211 - 221.
  • 4Arditi R, Ginzburg L R. Coupling in predator-prey dynamics & ratio dependence [J]. Journal of Theoretical Biology, 1989,139(3) :311 - 326.
  • 5张拥军,王美娟,徐金瑞.捕食者具有传染病的捕食系统模型分析[J].上海理工大学学报,2009,31(5):409-413. 被引量:8
  • 6孙凯玲,王美娟,朱春娟.具有性别偏食和Holling Ⅲ类功能反应的食饵捕食者模型[J].上海理工大学学报,2009,31(1):6-10. 被引量:3
  • 7Hsu S B, Hwang T W, Kuang Y. Global dynamics of a predator-prey model with Hassell-Varley type functional response[J]. Discrete and Continuous Dynamical Systems- Series B,2008,10(4):857- 871.
  • 8Wang K. Periodic solutions to a delayed predator-prey model with Hassell-Varley type functional response [J]. Nonlinear Analysis: Real World Applications, 2011,12(1) :137- 145.
  • 9Ji C Y,Jiang D Q,Shi N Z. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation [J]. Journal of Mathematical Analysis and Applications, 2009,359 (2) : 482 - 498.
  • 10Mandal P S, Banerjee M. Stochastic persistence and stationary distribution in a Holling-Tanner type prey- predator model [J]. Physica A, 2012, 391 (4): 1216 -1233.

二级参考文献10

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部