期刊文献+

一种时变的社区网络可信中心节点选取策略 被引量:5

A Time-varying Trusted Central Node Selection Strategy in Community Network
下载PDF
导出
摘要 针对社区推荐系统研究中,当推荐节点发生信息流交互时缺乏信任可靠性与动态变化性的问题,融合社区发现中的中心节点和信任节点的推荐算法,提出一种随时序演变的受信任的中心节点推荐方法。该方法利用社区划分提取网络中心节点,并对节点增设信任机制,通过节点信任度控制谣言等不良信息的传播。加入反馈机制对可信节点进行实时更新,以提高信息传播的安全度,从而得到具有信任值动态反馈特性的中心节点选择策略。实验结果表明,与传统可信边社区划分策略相比,该策略能有效减少谣言等不良信息的传播,增强信息流传递可靠性。 Aiming at the problem that the recommended node lacks trust reliability and dynamic changes during information interaction in the study of community recommendation system, this paper uses the recommendation algorithm of the central node and trusted node in community detection and puts forward a central node recommendation method which makes evolution by sequence and is trusted. This method uses community division to extract network center node, establishes trust mechanism for nodes, and uses the node trust to control the spread of bad information. A feedback mechanism is added to update the trusted node and improve the safety of information dissemination, thus obtaining the central node selection strategy with the characteristic of dynamic trust value feedbock. Experimental results show that, compared with the traditional trusted edge community division strategy, this strategy can avoid more rumor spreading and improve the reliability of information flow transmission.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第5期146-150,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61373160)
关键词 社区发现 信任关系 中心节点 信息流 推荐方法 community detection trust relationship central node information flow recommendation method
  • 相关文献

参考文献15

  • 1Folino F,Pizzuti C.An Evolutionary Multiobjective Approach for Community Discovery in Dynamic Networks[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1838-1852.
  • 2Newman M E J,Xiao Zhang,Nadakuditi R R.Spectra of Random Graphs with Community Structure and Arbitrary Degrees[J].Physical Review E,2014,89(4).
  • 3Pons P,Latapy M.Computing Communities in Large Networks Using Random Walks[C]//Proceedings of ISCIS’11.Berlin,Germany:Springer-Verlag,2011:191-218.
  • 4印桂生,张建国,张万松,谢新强.基于复杂网络的网构软件信任评估与搜索算法[J].计算机工程,2013,39(9):98-103. 被引量:4
  • 5Ravi K,Guha R,Raghavan P,et al.Propagation of Trust and Distrust[C]//Proceedings of the 13th International Conference on World Wide Web.New York,USA:ACM Press,2004:403-412.
  • 6Freeman L C.The Development of Social Network Analysis with an Emphasis on Recent Events[J].The SAGE Handbook of Social Network Analysis,2011,21(3):26-39.
  • 7刘馥源,林友芳.复杂网络中组织结构发现算法[EB/OL].[2014-04-12].http://www.paper.edu.cn/html/releasepaper/2012/12/43/.
  • 8Hao Ma,Zhou Dengyong,Chao Liu,et al.Recommender Systems with Social Regularization[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2011:287-296.
  • 9王刚,桂小林.社会网络中交易节点的选取及其信任关系计算方法[J].计算机学报,2013,36(2):368-383. 被引量:26
  • 10陈园,马林,郑敏,俞凯.基于信任度评估的移动自组织网络路由协议[J].计算机工程,2015,41(4):135-139. 被引量:4

二级参考文献52

共引文献31

同被引文献37

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部