期刊文献+

非负矩阵分解在免疫入侵检测中的优化和应用 被引量:4

Optimization and Application of Non-negative Matrix Factorization in Immune Intrusion Detection
下载PDF
导出
摘要 针对免疫入侵检测数据处理速度慢以及检测实时性差的问题,提出Bregman非负矩阵分解算法,采用Bregman迭代方式改进传统非负矩阵分解过程,优化矩阵迭代过程,利用矩阵本地化方法分解矩阵,增加矩阵的约束,保留检测数据内部结构并且加快数据的处理速度。在KDD CUP 1999数据集上的仿真结果表明,该算法有效提高了入侵检测速度,增强了免疫入侵检测的时效性。 To deal with the problem of slow data processing speed and poor timeliness of immune intrusion detection, non-negative matrix factorization by Bregman iteration is proposed. It improves the traditional method, changes matrix iteration process, and uses matrix location to realize the decomposition conditions and its constraint, better retention of the internal structure of the data and acceleration of the processing. Experimental results in KDD CUP 1999 datasets show that the approach can improve the speed of intrusion detection and enhance the timeliness of immune intrusion detection.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第5期173-178,185,共7页 Computer Engineering
基金 国家自然科学基金资助项目"免疫动态自适应机制研究"(61172168)
关键词 免疫入侵检测 非负矩阵分解 Bregman算法 迭代 矩阵本地化 immune intrusion detection Non-negative Matrix Factorization (NMF) Bregman algorithm iteration matrix localization
  • 相关文献

参考文献17

  • 1Ghosh K,Srinivasan R.Immune-system-inspired Approach to Process Monitoring and Fault Diag-nosis[J].Industrial&Engineering Chemistry Research,2010,50(3):1637-1651.
  • 2刘海龙,张凤斌,席亮.基于协同进化的免疫检测器分布优化算法[J].计算机工程,2013,39(11):154-157. 被引量:3
  • 3Elhag S,Fernández A,Bawakid A,et al.On the Combination of Genetic Fuzzy Systems and Pairwise Learning for Improving Detection Rates on Intrusion Detection Systems[J].Expert Systems with Applica-tions,2015,42(1):193-202.
  • 4Oriola O,Adeyemo A B,Robert A B C.Distributed Intrusion Detection System Using P2P Agent Mining Scheme[J].African Journal of Computing&ICT,2012,5(2):3-10.
  • 5Idrees F,Rajarajan M,Memon A Y.Framework for Distributed and Self-healing Hybrid Intrusion Detection and Prevention System[C]//Proceedings of International Conference on ICT Convergence.Washington D.C.,USA:IEEE Press,2013:277-282.
  • 6Daoudi M,Ahmed-Nacer M.An Intrusion Detection Approach Using an Adaptative Parameter-free Algorithm[C]//Proceedings of the 9th International Conference on Systems.Nice,France:International Academy Research and Industry Association,2014:178-184.
  • 7Mitchell R,Chen Ing-ray.A Survey of Intrusion Detection Techniques for Cyber-physical Systems[J].ACM Computing Surveys,2014,46(4):55-85.
  • 8Alruwaili F F,Gulliver A.CCIPS:A Cooperative Intrusion Detection and Prevention Framework for Cloud Services[J].International Journal of Latest Trends in Computing,2014,4(4):151-158.
  • 9Shelke M P K,Sontakke M S,Gawande A D.Intrusion Detection System for Cloud Computing[J].International Journal of Scientific&Technology Research,2012,1(4):67-71.
  • 10Kumar S,Dalal S.Optimizing Intrusion Detection System Using Genetic Algorithm[J].International Journal of Research Aspects of Engineering and Management,2014,1(1):42-45.

二级参考文献100

  • 1汪鹏.非负矩阵分解:数学的奇妙力量[J].计算机教育,2004(10):38-40. 被引量:10
  • 2米爱中,钟诚,李智.基于动态分类器选择的网络入侵检测方法[J].计算机工程与应用,2005,41(27):123-125. 被引量:1
  • 3谷雨,徐宗本,孙剑,郑锦辉.基于PCA与ICA特征提取的入侵检测集成分类系统[J].计算机研究与发展,2006,43(4):633-638. 被引量:25
  • 4Anderson C W,Kirby M.EEG subspace representations and feature selection for brain computer interfaces.Proceedings of the 1st IEEE Workshop on Computer Vision and Pattern Recognition for Human Computer Interaction,2003,475~483
  • 5Garrett G,Peterson D A,Anderson C W,et al.Comparison of linear and nonlinear methods for EEG signal classification.IEEE Transactions on Neural Systems and Rehabilitative Engineering,2003,11(2):141~144
  • 6Saito N,Larson B M,Benichou B.Sparsity vs.statistical independence from a best-basis viewpoint.In:Aldroubi A,Laine A F,Unser M A,eds.Proc SPIE Wavelet Applications in Signal and Image Processing VIII,2000,4119:474~486
  • 7Saul L K,Sha F,Lee D D.Statistical signal processing with nonnegativity constraints.Proceedings of the Eighth European Conference on Speech Communication and Technology,Geneva,Switzerland,2003,2:1001~1004
  • 8Liu W X,Zheng N N,Li X.Relative gradient speeding up additive updates for nonnegative matrix factorization.Neurocomputing,2004,57:493~499
  • 9Wild S M,Curry J,Dougherty A.Improving non-negative matrix factorizations through structured initialization.Pattern Recognition,2004,37:2217~2232
  • 10Plumbley M D.Conditions for non-negative independent component analysis.IEEE Signal Processing Letters,2002,9(6):177~180

共引文献57

同被引文献21

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部