期刊文献+

多晶硅铸锭内嵌杂质引发热应力的数值分析 被引量:1

Numerical Analysis of Thermally-induced Stress Caused by Inclusions Embedded in Polycrystalline Silicon Ingot
下载PDF
导出
摘要 对制造光伏电池用多晶硅锭中的主要硬质夹杂SiC、Si3N4引起的热致应力进行数值分析。首先用晶体生长软件CGsim模拟定向凝固,获得铸锭凝固完成时温度场及夹杂分布,再基于此用有限元分析软件ANSYS分别分析这两种嵌于硅基体内的夹杂在硅基体内引起的热应力。夹杂颗粒模型形状设计依据其实际形状特征。由于SiC与硅均为立方结构,SiC夹杂影响可处理为各向同性;对于六方结构的Si3N4夹杂,通过对弹性矩阵的坐标转换考虑了其力学性能的各项异性。结果表明,多晶硅锭由1685 K降至室温的过程中,夹杂引起的最大热致应力SiC颗粒约为16 MPa,Si3N4颗粒在13-21 MPa之间,SiC团簇约为21 MPa,多颗粒在18-21 MPa之间。基于此,计算出多晶硅锭内最小失稳临界裂纹尺寸在286-676μm之间,小于夹杂体的尺寸,因此在铸锭冷却过程中夹杂引起的裂纹发生可能性较大。 A numerical analysis was performed to investigate the thermally-induced stress caused by SiC and Si3N4,the main hard inclusions in polycrystalline silicon ingot uesd in fabricating Photovoltaic solar cells. Firstly The temperature field and impurities( SiC,Si3N4) distribution after solidification were obtained through the simulation of directional solidification of polycrystalline silicon ingot by using the crystal growth software CGsim. Then based on it,the thermally-induced stress was studied caused by these two kinds of hard inclusions embedded in silicon matrix by using the finite element analysis software ANSYS. Model shape was designed in terms of true shape of the inclusion particles. Cause SiC and silicon were all the cubic structure,the action of SiC inclusion can be treated as isotropy; For Si3N4 inclusion with hexagonal structure,anisotropy of mechanical properties were considered through the coordinate transformation of the elastic stiffness matrix. It indicated that,in the process of cooling of polycrystalline silicon ingot from 1685 K to room temperature,the maximum thermally-induced stress caused by inclusions were: 16 MPa by SiC particle,13-21 MPa by Si3N4 particle,15 MPa by SiC clusterand 18-21 MPa by multi-particles,respectively. Bsed on it,the calculation result showed that the minimum size of instability critical crack in polycrystalline silicon ingot was in the range from 286 to676μm,less than the size of inclusions,so the crack caused by inclusions was easy to appear in the process of cooling of ingot.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2016年第4期923-928,共6页 Journal of Synthetic Crystals
基金 宁夏自然科学基金(NZ14038)
关键词 多晶硅 夹杂 热应力 polycrystalline silicon inclusion thermally-induced stress
  • 相关文献

参考文献15

  • 1孙守振,王林勇,奚西峰.碳化硅粒径分布对单晶硅线切割的影响[J].中国粉体技术,2011,17(1):52-54. 被引量:4
  • 2邱深玉,李样生,余方新,刘桂华,陈楠.太阳能多晶硅片表面线状缺陷的形貌特征及形成原因[J].太阳能学报,2012,33(5):802-805. 被引量:3
  • 3万群 李玉珍 徐宝琨 等.多晶硅中碳化物及其来源的研究.半导体学报,1984,5(4):360-368.
  • 4Hari Rao C V,Bates H E,Ravi K V.Electrical Effects of Si C Inclusions in EFG Silicon Ribbon Solar Cells[J].Journal of Applied Physics,1976,47(6):2614-2619.
  • 5Zhang R,van Dyk E E,Rozgonyz G A,et al.Investigation of Foreign Particles in Polycrystalline Silicon Using Infrared Microscopy[J].Solar Energy Materials&Solar Cells,2004,82:577-585.
  • 6Du G,Zhou L,Rosseto P,Y.Wan,et al.Hard Inclusions and Their Detrimental Effects on the Wire Sawing Process of Multicrystalline Silicon[J].Solar Energy Materials&Solar Cells,2007,91:1743-1748.
  • 7李进,张洪岩,高忙忙,周锐,薛子文,梁森,李国龙,李海波,何力军.氩气流速对400mm大直径磁场直拉单晶硅固液界面、热应力及氧含量的影响[J].人工晶体学报,2014,43(5):1193-1198. 被引量:14
  • 8李世普.陶瓷工艺学[M].武汉:武汉工业大学出版社,1990:121.
  • 9Tan J J,Li Y,Ji G F.Elastic Constants and Bulk Modulus of Semiconductors:Performance of Plane-wave Pseudopotential and Local-densityapproximation Density Functional Theory[J].Computational Materials Science,2012,58:243-247.
  • 10Seiner H,Ramirez C,Koller M,et al.Elastic Properties of Silicon Nitride Ceramics Reinforced with Graphene Nanofillers[J].Materials and Design,2015,87:675-680.

二级参考文献34

  • 1闵乃本.晶体生长物理基础[M].上海:上海科技出版社,1982.
  • 2[2]俞昌铭编著.热传导及其数值分析[M].北京:清华大学出版社,1982.
  • 3[3]Derby J J,Brown R A.Numerical simulationtechnology of cyrstal Growth [J]. J. Crystal Growth, 1989, 97: 152.
  • 4[4]Maruyama S. A Three-dimension numerical method based on the superposition principle [J]. Numer. Heat Transfer, 1993, 24:181.
  • 5[5]Maruyama S, Aihara T. Radiation heat transfer of a czochralski crystal growth furnace with arbitrary specula and diffuse surfaces [J]. Int. Heat Mass Transfer, 1994, 37: 1723.
  • 6HAHN P O. The 300 mm silicon wafer: a cost and technology challenge[J]. Microelectronic Engineering, 2001, 56 ( 1/2) : 3-13.
  • 7夏海良.半导体器件制造工艺[M].北京:电子工业出版社,1985.
  • 8KAO I, PRASADV, LI J, et al. Wafer slicing and wire saw manufacturing technology[C]//Design & Manufacturing Grantees Conference, USA. Proceedings of the 1997 NSF. [s.n.], 1997 : 239-240.
  • 9BHAGAVAT S, KAO I. A finite element analysis of temperature variation in silicon wafers during wire-saw slicing[J]. Machine Tools & Manufacture, 2008, 48 (1): 95-106.
  • 10LI J, KAO I, PRASAD V. Modeling stresses of contacts in wiresaw slicing of polycrystalline and crystalline ingots: Application to silicon wafer production[J]. Electronics Packaging, 1998, 120(2): 123-128.

共引文献94

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部