期刊文献+

扶手椅型石墨烯纳米带吸附镍、铜原子链的电子结构 被引量:3

Electronic Structures of Ni and Cu Monatomic Chains Adsorbed Armchair Graphene Nanoribbons
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理方法,研究了扶手椅型石墨烯纳米带吸附3d过渡金属磁性Ni和非磁性Cu单原子链的结构、电子性质和磁性。吸附体系经过弛豫后,不同宽度纳米带吸附单原子链的稳定结构是不同的。Ni比Cu原子链在石墨烯纳米带表面的吸附更为稳定。原子链吸附在纳米带的边缘洞位(即5AG-1、6AG-1和7AG-1位置)时较为稳定,且稳定程度随着纳米带宽度的增加而增加。原子链和石墨烯纳米带的相互作用使得Ni单原子链吸附体系的磁矩为零。Cu原子链吸附5AG-1的复合体系具有磁性。Ni原子链的吸附体系呈现出带隙较小的半导体性质,而Cu原子链的吸附体系全都表现出金属性质。 The structural,electronic and magnetic properties of 3d transition metal Ni and Cu monatomic chains adsorbed armchair graphene nanoribbons( AGNR) were systemically investigated using firstprinciples calculations. For the relaxed geometry structure,the Ni chain adsorbed AGNR is more stable than that of Cu atomic chain. The adsorption systems are relatively stable for the atomic chain on the edge hollow position of nanoribbons( 5AG-1,6AG-1,7AG-1). The stability of adsorption systems increases with the increase of the width of nanoribbons. There has magnetic quenching phenomenon and zero magnetic moment for the Ni adsorbed AGNR systems. There are a little magnetic for the Cu monatomic chains adsorption on 5AG-1. All the Ni monatomic chains adsorbed AGNR have semiconductor character with reduced band gap. But it is different for the nonmagnetic Cu monatomic chains,the Cu chains adsorbed AGNR have metallic character.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2016年第4期1082-1087,1093,共7页 Journal of Synthetic Crystals
基金 国家自然科学基金(11504292) 中国博士后科学基金(2014M560798) 陕西省自然科学基础研究计划(2013JM8004) 陕西省博士后科学基金(111)
关键词 石墨烯纳米带 原子链 电子结构 第一性原理 graphene nanoribbon monatomic chain electronic structure first-principle
  • 相关文献

参考文献29

  • 1Novoselov K S,Geim A K,Morozov S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306:666-669.
  • 2Son Y W,Cohen M L,Louie S G.Energy Gaps in Graphene Nanoribbons[J].Physical Review Letters,2006,97:216803.
  • 3Han M Y,Ozyilmaz B,Zhang Y,et al.Energy Band-gap Engineering of Graphene Nanoribbons[J].Physical Review Letters,2007,98:206805.
  • 4Cruz-Silva E,Barnett Z M,Sumpter B G,et al.Structural,Magnetic,and Transport Properties of Substitutionally Doped Graphene Nanoribbons from First Principles[J].Physical Review B,2011,83:155445.
  • 5Li H S,Hu H Q,Bao C J,et al.The Stability and Electronic Structure of Fe Atoms Embedded in Zigzag Graphene Nanoribbons[J].Physica B,2014,441:28-32.
  • 6Zhang D,Long M,Zhang X,et al.Designing of Spin-filtering Devices in Zigzag Graphene Nanoribbons Heterojunctions by Asymmetric Hydrogenation and B-N Doping[J].Journal of Applied Physics,2015,117:014311.
  • 7刘春梅,肖贤波,刘念华.吸附缺陷对armchair型石墨烯纳米条带输运性质的影响[J].人工晶体学报,2011,40(1):104-108. 被引量:6
  • 8Kan E J,Xiang H J,Yang J L,et al.Electronic Structure of Atomic Ti Chains on Semiconducting Grapheme Nanoribbons:A First-principles Study[J].The Journal of Chemical Physics,2007,127:164706.
  • 9Sevincli H,Topsakal M,Durgun E,et al.Electronic and Magnetic Properties of 3d Transition-metal Atom Adsorbed Graphene and Graphene Nanoribbons[J].Physical Review B,2008,77:195434.
  • 10Longo R C,Carrete J,Gallego L J.Ab Initio Study of 3d,4d,and 5d Transition Metal Adatoms and Dimers Adsorbed on Hydrogen-passivated Zigzag Graphene Nanoribbons[J].Physical Review B,2011,83:235415.

二级参考文献129

  • 1Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional Gas of Massless Dirac Fermions in Grapheme[J].Nature,2005,438(4):197-200.
  • 2Son Y,Cohen M L,Louie S G.Half-metallic Graphene Nanoribbons[J].Nature,2006,444(4):347-342.
  • 3Han M Y,Ozyilmaz B,Zhang Y,et al.Energy Band-gap Engineering of Graphene Nanoribbons[J].Phys.Rev.Lett.,2007,98(4):206805-206809.
  • 4Wang Z F,Li Q X,Zheng H,et al.Tuning the Electronic Structure of Graphene Nanoribbons through Chemical Edge Modification:A Theoretical Study[J].Phys.Rev.B,2007,75(4):113406-113410.
  • 5Ayako H,Kazu S,Alexandra G,et al.Direct Evidence for Atomic Defects in Graphene Layers[J].Nature,2004,430(4):870-873.
  • 6Oeiras R Y,Araujo-Moreira F M,da Silva E Z.Defect-mediated Half-metal Behavior in Zigzag Graphene Nanoribbons[J].Phys.Rev.B,2009,80(4):073405-073409.
  • 7Deretzis I,Fiori G,Iannaccone G,et al.Effects due to Backscattering and Pseudogap Features in Graphene Nanoribbons with Single Vacancies[J].Phys.Rev.B,2010,81 (5):085427-085432.
  • 8Zheng X H,Wang R N,Song L L,et al.Impurity Induced Spin Filtering in Graphene Nanoribbons[J].Appl.Phys.Lett.,2009,95(3):123109-123112.
  • 9Biel B,Blase X,Francois T,et al.Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons[J].Phys.Rev.Lett.,2009,102(4):096803-096807.
  • 10Park J,Yang H,Park K S,et al.Effects of Nonmagnetic Impurities on the Spin Transport Property of a Graphene Nanoribbon Device[J].J.Chem.Phys.,2009,130(7):214103-214110.

共引文献20

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部