期刊文献+

基于光照归一化分块自适应LTP特征的人脸识别 被引量:4

Face Recognition Based on Illumination Normalization and Block- based Adaptive Local Ternary Pattern
下载PDF
导出
摘要 针对复杂光照人脸识别的问题,文中提出一种基于光照归一化分块自适应阈值局部三值模式(Adaptive Threshold Local Ternary Pattern,ATLTP)的人脸识别算法。该方法首先对人脸图像进行光照归一化预处理,消除大部分光照影响;然后对处理后的人脸图像进行ATLTP特征提取。为了更有效地表征人脸特征,进一步将ATLTP特征矩阵划分为大小相等的子块,并对各个子块进行ATLTP特征直方图统计,最后将所有子块的直方图连接起来,构成整幅人脸图像的鉴别特征。根据最近邻准则进行分类识别,在Extended Yale B人脸库和CMU PIE人脸库上的实验结果表明,所提算法可以有效提高复杂光照人脸识别的性能。 To solve the problem of face recognition under complex illumination,an effective face recognition method based on illumination normalization and block- based Adaptive Threshold Local Ternary Pattern( ATLTP) is proposed. It first performs illumination normalization,and eliminates most of the light effects on face images. Then ATLTP features are extracted from the processed face images. To represent the face features effectively,the feature matrix is divided into several units,and the histogram of each unit is computed and combined as facial features. According to the nearest neighbor principle for face recognition,the experiment on Extended Yale B face databases and CMU PIE face databases demonstrates that significant recognition rate can be achieved under the complex illumination conditions by the proposed method.
出处 《计算机技术与发展》 2016年第5期56-60,共5页 Computer Technology and Development
基金 江苏省自然科学基金(BK20131342)
关键词 人脸识别 光照归一化 自适应阈值 局部三值模式 分块直方图 face recognition illumination normalization adaptive threshold local ternary pattern block histogram
  • 相关文献

参考文献12

  • 1Phillips P J,Scruggs W T,O' Toole A J,et al. FBVT 2006 and ICE 2006 large-scale experimental results [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2010,32 (5) :831-846.
  • 2Meylan L, Alleysson D, Susstrunk S. Model of retinal local ad- aptation for the tone mapping of color filter array images[ J]. Journal of Optical Society of America A,2007,24(9) :2807- 2816.
  • 3Lee P H ,Wu S W, Hung Y P. Illumination compensation using oriented local histogram equalization and its application to face recognition [ J ]. IEEE Transactions on Image Processing, 2012,21 (9) :4280-4289.
  • 4Shashua A, Riklin-Raviv T. The quotient image: class-based re-rendering and recognition with varying illumination [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence ,2001,23 (2) : 129 - 139.
  • 5Zhang Taiping, Tang Yuanyan, Fang Bin, et al, Face recogni- tion under varying illumination using gradienffaces [ J ]. IEEE Transactions on Image Processing, 2009, 18 ( 11 ) : 2599 - 2606.
  • 6Chen T,Yin W,Zhou X S,et al. Total variation models for var- iable lighting face recognition [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence ,2006,28 (9) : 1519 - 1524.
  • 7Zhang Taiping, Tang Yuanyan, Fang Bin, et al. Multiseale fa- cial structure representation for face recognition under varying illumination [ J ]. Pattern Reeagnition ,2009,42 (2) :251-258.
  • 8Ojala T, Pietik/tinen M, Mllenp T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[ J ]. IEEE Transactions on Pattern Analysis and Ma- chine InteUigenee ,2002,24 ( 7 ) :971-987.
  • 9Ahonen T, Hadid A, Pietiktinen M. Face description with local binary patterns: applieation to face reeagnition [ J ]. IEEE Transactions on Pattern Analysis and Maehine Intelligence, 2006,28 (12) :2037-2041.
  • 10Tan X, Song S, Zhou Z H, et al. Enhanced local texture feature sets for face recognition under difficult lighting conditions [ J ]. IEEE Transactions on Image Processing,2010,19 (6) :1621- 1628.

二级参考文献8

  • 1Corner B R.Noise Estimation in Remote Sensing Imagery Using Data Masking[J].International Journal of Remote Sensing,2003,24(4):689-702.
  • 2Freek D,Van Der Meer,Steven M Dejong.Imaging Spectrometry:Based Principles and Prospective Applications[M].Netherlands:Kluwer Academic Publishers,2001.
  • 3Paul J Curran,Jennifer L Dungan.Estimation of Signal-to-Noise:A New Procedure Applied to AVIRIS Data[J].IEEE Trans.Geosci.Remote Sensing,1989,27(5):620-628.
  • 4Gao B C.An Operational Method for Estimating Signal to Noise Ratios from Data Acquired with Imaging Spectrometers[J].Remote Sensing of Environment,1993,43(1):23-33.
  • 5Roger R E,Arnold J F.Reliably Estimating the Noise in AVIRIS Hyperspectral Images[J].International Journal of Remote Sensing,1996,17(10):1951-1962.
  • 6Canny J.A Computational Approach to Edge Detect[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 7陈秋林,薛永祺.OMIS成像光谱数据信噪比的估算[J].遥感学报,2000,4(4):284-289. 被引量:23
  • 8蒋青松,王建宇.实用型模块化成像光谱仪多光谱图像的信噪比估算及压缩方法研究[J].光学学报,2003,23(11):1335-1340. 被引量:23

共引文献53

同被引文献30

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部