期刊文献+

流量连续可调火箭发动机极度富燃燃烧特性 被引量:3

Combustion characteristics of an extreme fuel-rich throttleable rocket engine
下载PDF
导出
摘要 以气氧/煤油作为推进剂对火箭发动机进行流量连续调节试验,研究火箭发动机连续变工况过程中的燃烧特性。火箭发动机通过可调气蚀文氏管连续调节煤油流量。试验在富燃工况(混合比0.405-0.690)下成功点火,并实现了混合比、燃气总流量连续调节。试验发现流量连续调节过程中,当混合比小于0.535时,燃烧室压力随煤油流量减小而增大;当混合比大于0.535时,燃烧室压力随煤油流量减小而减小。同时,特征速度和燃烧效率随混合比增大而增大,并且混合比小于0.535时特征速度、燃烧效率增大的速率大于混合比大于0.535时的速率。研究表明推进剂流量与燃烧效率同时影响燃烧室压力。当混合比小于0.535时,燃烧效率的影响占优;混合比大于0.535时,推进剂流量影响占优。 To study the combustion characteristics of a rocket engine under continuous throttling, a continuous throttling experiment was conducted by using GOX (gaseous oxygen )/kerosene as propellants. Mass flow rate of kerosene was continuously throttled by a throttleable cavitation Venturi nozzle. Successful ignition under fuel rich condition ( mixture ratio ranged from 0. 405 to 0. 690 ) and the continuous throttling of mixture ratio and combustion gas flow rate were achieved. Results show that chamber pressure increases with the decrease of kerosene flow when the mixture ratio is less than 0. 535 but decreases when the mixture ratio is greater than 0. 535. Meanwhile, characteristic velocity and combustion efficiency increase with the increasing mixture ratio, but the increasing ratio is bigger when the mixture ratio is less than 0. 535 than that when the mixture ratio is greater than 0. 535. The results indicate that the mass flow rate of propellants and combustion efficiency simultaneously affect the chamber pressure. Combustion efficiency dominates the chamber pressure when the mixture ratio is less than 0. 535 while mass flow rate of propellants dominates when the mixture ratio is greater than 0. 535.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2016年第2期12-18,共7页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(11472303 11402298) 新世纪优秀人才支持计划资助项目(NCET-13-0156)
关键词 火箭基组合循环 火箭发动机 气氧/煤油 连续调节 rocket based combined cycle rocket engine GOX/kerosene continuous throttling
  • 相关文献

参考文献23

  • 1Marten D, Lewis M, Manrice L Q. Experimentation, test, and evaluation requirements for future airbreathing hypersonic systems [ J ]. Journal of Propulsion and Power, 2001, 17 (6): 1361-1365.
  • 2MeDaniel J C, Chelliah H, Goyne C P, et al. US national center for hypersonic combined cycle propulsion: an overview[ C]// Proeeedings of 16th AIAA./DLR/DGLR Internatianal Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2009 -7280, 2009.
  • 3Takegoshi M, Tomioka S, Ueda S, et al. Firing-tests of a rocket eombustor for combined cycle engine at various conditions [ C]//Proceedings of 41st AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, AIAA 2005 - 4286, 2005.
  • 4Sawai S, Sato T, Kobayashi H, et al. Flight test plan for ATREX engine development[ C ]//Proceedings of 12th AIAA International Space Planes and Hypersonic Systems and Technologies, AIAA 2003 - 7027, 2003.
  • 5Sato T, Tanatsugu N, Kobayashi H, et al. Countermeasures against the icing problem on the ATREX precooler [J]. Aeta Astronautiea, 2004, 54(9): 671 -686.
  • 6Chojnach K T, Hawk C W. An assessment of the rocket- based combined cycle propulsion system for earth-to-orbit transportationt [ C ]//Proceedings of 29th Joint Propulsion Conference and Exhibit, AIAA 93 -1831, 1993.
  • 7秦飞,吕翔,刘佩进,何国强.火箭基组合推进研究现状与前景[J].推进技术,2010,31(6):660-665. 被引量:43
  • 8Takegoshi M, Tomioka S, Ueda S, et al. Performances of a rocket chamber for the combined-cycle engine at various conditions [ C ]//Proceedings of 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2006 - 7978, 2006.
  • 9张蒙正,张玫,严俊峰,吕奇伟.RBCC动力系统工作模态问题[J].火箭推进,2015,41(2):1-6. 被引量:17
  • 10潘科玮,何国强,刘佩进,杨斌.RBCC混合燃烧模态一次火箭对燃烧稳定影响[J].推进技术,2010,31(5):544-548. 被引量:19

二级参考文献79

共引文献99

同被引文献32

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部