期刊文献+

基于在线多核boosting的鲁棒视觉跟踪 被引量:1

Robust visual tracking via online multiple kernel boosting
原文传递
导出
摘要 针对多核学习不满足视觉跟踪外观模型在线更新的要求,提出了一种基于在线多核boosting的鲁棒跟踪算法。采用boosting技术代替传统的全局寻优计算核函数权值,构建基于互补性特征集和核函数集的弱分类器池,将评估分类器判别性的置信度函数作为迭代计算中的目标函数,获取判别能力最好的弱分类器及其权值;引入基于当前帧候选样本信任度分布熵的修正因子,提高在快速变化环境下获取的权值精度;设计了"在线学习"方式代替传统的"批处理学习",通过基于l2范数子空间评估完成外观模型的自适应更新,避免因误差积累导致跟踪偏离。多组具有挑战性的视频序列的跟踪结果表明,本文算法的性能要好于多种现有的优秀跟踪算法。 Multiple kernel learning can't meet the requirements of appearance model online updating in visual tracking. To deal with the problem,a robust visual tracking algorithm via online multiple kernel boosting is proposed. We calculate the weights of kernel function with boosting technique instead of clas- sical global optimization. A weak classifier pool is constructed based on complementary features set and kernels set,and confidences of weak classifiers, which reflect the discriminative capacity, are utilized as objective function in iterative computation to select most discriminative classifiers and calculate weights. Then,the accuracy of weights in variable environment is developed via introducing correction factor cal- culated from the confidence distribution entropy of all candidates in the current frame. Classical patch learning in multiple kernel learning is replaced by online learning,and an appearance model can be adap- tively updated based on 12-norm subspace evolution strategy to avoid the drifting problem caused by error accumulation over time. The experiment results on extensive challenging sequences demonstrate that the proposed method has better performance than (MKL) the state-of-the-art trackers.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第5期539-548,共10页 Journal of Optoelectronics·Laser
基金 安徽高校自然科学重大研究(KJ2015ZD14) 国家自然科学基金(61503394) 安徽省自然科学基金(1408085QF131,1508085QF121)资助项目
关键词 视觉跟踪 多核学习(MKL) 信任度分布熵 子空间评估 visual tracking multiple kernel learning confidence distribution entropy subspace evolution
  • 相关文献

参考文献21

  • 1Li A,Lin M,Wu Y,et al. NUS-PRO:A new visual tracking challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,2(38) :335-349.
  • 2Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2015,37(9) : 1834-1848.
  • 3苏延召,李艾华,金广智,张玮,吴鹏.双层特征优化的视觉运动目标跟踪算法[J].光电子.激光,2015,26(1):162-169. 被引量:5
  • 4He Y,Pei M,Yang M,et al. Online visual tracking by in- tegrating spatio-temporal cues[J], lET Computer Vision, 2014,9(1) : 124-137.
  • 5Cannons K J,Wildes R P. The applicability of spatiotem- poral oriented energy features to region tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2014,36(4) : 784-796.
  • 6沈丁成,薛彦兵,张桦,徐光平,高赞.一种鲁棒的基于在线boosting目标跟踪算法研究[J].光电子.激光,2013,24(1):170-175. 被引量:9
  • 7Yin Y,Xu D, Wang X,et al. Online state-based structured SVM combined with incremental PCA for robust visua tracking[J]. IEEE Transactions on Cybernetics, 2015,9 (45) : 1988-2000.
  • 8Zhang J, Liu K, Cheng F, et al. Scale adaptive visual tracking with latent SVM[J]. Electronics Letters,20]4,50 (25) : 1933-1934.
  • 9夏瑜,吴小俊,李菊,周立凡.一种视觉跟踪中的模板更新策略[J].光电子.激光,2015,26(7):1358-1363. 被引量:4
  • 10Kwon J, Lee H S, Park F C,et al. A geometric particle ill- ter for template-based visual tracking[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence,2014, 36(4) :625-643.

二级参考文献39

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2张波,田蔚风,金志华.Joint tracking algorithm using particle filter and mean shift with target model updating[J].Chinese Optics Letters,2006,4(10):569-572. 被引量:12
  • 3Boris Babenko, Ming-Hsuan Yang. Senior and serge be- Iongie,member, robust object tracking with online multi- ple instance learning[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2010, 33 (8): 1619- 1632.
  • 4Shai Avidan. Ensemble tracking[J]. IEEE Transactons on Pattern Analysis and Machine Intelligence, 2007,29 (2) : 261-271.
  • 5Shai Avidan, Support Vector Tracking[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2004, 26(8) : 1064-1072.
  • 6Collins R,Liu Y,Leordeanu M. Online selection of discrim- inative tracking features. IEEE Transactions on Pattern A- nalysis and Machine Intelligence[J]. 2005,27 (10) : 1631- 1643.
  • 7Lim J,Ross D,Lin R,et al. Incremental learning for visual tracking[A]. Saul, L. K., Weiss, Y., Bottou, L., eds. : The Neural Informueion Processing Systems[C]. MIT Press, 2005,793-800.
  • 8Avidan S. Ensemble tracking[A], in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C]. 2005,494-501.
  • 9Grabner H, Bischof H. On-liine boosting and vision[A]. Proc. of IEEE Conference on Computer Vision and Pattern Recognition[C]. 2006,260-267.
  • 10Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting[A]. Proeeding of the Brieish British Ma- chine Vision Conference[C]. 2006,47-56.

共引文献12

同被引文献3

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部