期刊文献+

旋转方柱散射体对二维磁振子晶体薄板带结构的影响

Effects on Band Gaps by Rotating Square Rods in Two-Dimensional Magnonic Crystal Thin Film
下载PDF
导出
摘要 利用平面波展开法,对铁(Fe)方柱正方排列在镍(Ni)基底中构成的薄板状二维磁振子晶体的带结构进行了数值计算,研究了旋转方柱散射体对薄板状二维磁振子晶体带隙结构的影响.结果显示,旋转方柱散射体可以有效地打开自旋波带隙并得到高频带隙,同时还能改变带隙中心频率的位置,从而实现对薄板状磁振子晶体带隙结构的调控作用. Using the plane-wave expansion method, band structures of two-dimensional magnonic crystal thin film composed of Fe square rods embedded squarely in a Ni thin film are numerically calculated,in which the effects of rotating square scatterers on the gaps are studied. The results show that it is effective to open band gaps and to produce high frequency band gaps by rotating the square rods, at the same time, the center frequency of band gap can be changed. That is to say, the control of the band gap structure in magnonic crystal thin film can be realized.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2016年第2期194-198,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11264028) 内蒙古自然科学基金资助项目(2015BS0106)
关键词 磁振子晶体薄板 旋转方柱散射体 带隙结构 平面波展开法 magnonic crystal thin film rotating square rod scatterer band gap structure plane-wave expansion method
  • 相关文献

参考文献14

  • 1李春光,曹永军.阻尼效应对二维磁振子晶体带隙结构的影响[J].内蒙古师范大学学报(自然科学汉文版),2014,43(3):304-306. 被引量:1
  • 2Krawczyk M, Puszkarski H. Plane-wave theory of three-dimensional magnonic crystals [J]. Phys Rev B,2008,77: 054437.
  • 3Tiwari R P,Stroud D. Magnetic superlattice with two-dimensional periodicity as a waveguide for spin waves [J]. Phys Rev B,2010,81220403.
  • 4曹永军,云国宏,那日苏.平面波展开法计算二维磁振子晶体带结构[J].物理学报,2011,60(7):700-703. 被引量:27
  • 5Vasseur J O, Dobrzynski L,Djafari-Rouhani B, et al. Magnon band structure of periodic composites [J]. Phys Rev B, 1996,54..1043.
  • 6Cao Yongjun, Yun Guohong, Liang Xixia, et al. Band structures of two-dimensional magnonic crystals with different shapes and arrangements of scatterers [J]. J Phys D: Appl Phys,2010,43:305005.
  • 7王利,曹永军.二维磁振子晶体带结构的优化[J].内蒙古师范大学学报(自然科学汉文版),2013,42(2):157-161. 被引量:2
  • 8Krawczyk M, Mamica S, Mruczkiewicz M, et al. Magnonic band structures in two-dimensional bi-component magnonic crystals with in-plane magnetization [J]. J Phys D: Appl Phys, 2013,46 .. 495003.
  • 9Krawczyk M,Grundleer D. Review and prospects of magnonic crystals and devices with reprogrammable band structure [J]. Phys Condens Matter, 2014,26 : 123202.
  • 10Yang Hui, Yun Guohong, Cao Yongjun. Spin-wave band gaps created by rotating square rods in two-dimensional magnonic crystals [J]. J Phys D:Appl Phys,2011,44 ..455001.

二级参考文献19

  • 1Wang Z K, Zhang V L, Lira H S, Ng S C, Kuok M H, Jain S, Adeyeye A 0 .2009. Appl. Phys. Lett. 94 083112.
  • 2Puszkarski H, Krawczyk M .2003. Solid State Phenom. 94 125.
  • 3Kruglyak V V, Kuchko A N .2001. Phys. Met. Metallogr, 92 211.
  • 4Krawczyk M, Puszkarski H .2008. Phys. Rev. B 77 054437.
  • 5CaoYJ, YunGH, LiangXX, BaiN.2010.J. Phys. DAppl. Phys. 43 305005.
  • 6Vasseur J O, Dobrzynski L, Djafari-Rouhani B 1996 Phys. Rev. B 54 1043.
  • 7Puszkarski H,Krawczyk M.Magnonic crystals the magnetic counterpart of the photonic crystals[J].Solid state phenom,2003,94:125.
  • 8Cao Yongjun,Yun Guohong,Liang Xixia,et al.Band structures of two-dimensional magnonic crystals with different shapes and arrangements of scatterers[J].J Phys D:Appl Phys,2010,43:305005.
  • 9Yang Hui,Yun Guohong,Cao Yongjun.Point defect states of exchange spin waves in all-ferromagnetic two-dimensional magnonic crystals[J].J Appl Phys,2012,111:013908.
  • 10Neusser S,Duerr G,Bauer H G,et al.Anisotropic propagation and damping of spin waves in a nanopatterned antidote lattice[J].Physical Review Letters,2010,105:067208.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部