期刊文献+

基于区间估计方法的零星需求电力物资协议采购方案 被引量:1

Prediction-interval-based Purchase Strategy in Agreement for Slow-moving Electric Power Materials
下载PDF
导出
摘要 针对零星需求电力物资的库存管理问题,设计了一个基于区间估计方法的协议采购方案。首先提出一个对历史无需求产品构成的产品池建立未来总需求率区间估计的方法;然后在不同的参数条件下对这种方法进行可靠性检验,确定区间估计方法适用的参数范围;最后选取符合参数条件的电力物资,针对其中特定期间内零需求的物资,采用此方法建立未来总需求率的区间估计,并结合其价格水平,构建协议采购方案。此方案提高了采购效率,实现了零库存成本、高服务水平的库存管理目标。 The dilemma in inventory management of electric power materials with slow-moving demand is defined and resolved by purchase in agreement. A proposed prediction interval of estimated aggregate future demand rate is constructed for a product pool in which all products have no demand historically. A simulation study examines the reliability of the methodology across various parameters. The adaptable pa- rameters are employed in the selection of electric power materials. The interval of demand rate for those with an observed demand of zero in given period out of all selected materials is estimated, The prediction interval of aggregate demand rate and the real price level are combined to calculate the sum for funding the demand of those materials in a time unit. The purchase contract price in agreement is decided accordingly, by which electric power enterprises are allowed to boost purchase efficiency and achieve inventory management objectives of both zero cost and high service level.
出处 《工业工程》 2016年第2期17-24,共8页 Industrial Engineering Journal
基金 国家自然科学基金资助项目(71302053)
关键词 电力物资 零星需求 区间估计 协议采购 electric power materials slow-moving demand prediction interval purchase in agreement
  • 相关文献

参考文献28

  • 1EAVES A H C, KINGSMAN B G. Forecasting for the orde- ring and stockholding of consumable spare parts [ J 1- Journal of the Operational Research Society ,2004,55 (4) : 431-437.
  • 2FEENEY G J, SHERBROOKE C C. The (S-1 ,S) inventory policy under compound Poisson demand [ J ], Management Science, 1966,12(5) :391-411.
  • 3MATHEUS P,GELDERS L. The (R, Q) policy subject to a compound Poisson demand pattern[ J]. International Journal of Production Economics, 2000,68 ( 3 ) :307-317.
  • 4BABAI M Z,DALLERY J Z Y. Analysis of order-up-to-level in- ventory systems with compound Poisson demand [J]. European Journal of Operational Research, 2011,210 (3) :552-558.
  • 5DUNSMUIR W T M, SNYDER R N. Control of inventories with intermittent demand [ J]. European Journal of Opera- tional Research, 1989,40( 1 ) : 16-21.
  • 6JANSSEN F,HEUTS R,DE KOK A. On the (R, s, Q) in- ventory model when demand is modelled as a compound Ber- noulli process [ J ]. European Journal of Operational Re- search, 1998,104( 3 ) :423-436.
  • 7TEUNTER R H, SYNTETOS A A, BABAI M Z. Determi- ning order-up-to levels under periodic review for compound binomial ( intermittend ) demand [ J ]. European Journal of Operational Research, 2010,203 ( 3 ) :619-624.
  • 8LARSEN C, THORSTENSON A. A comparison between the order and the volume fill rates for a base-stock inventory con- trol system under a compound renewal demand process [ J ]. Journal of the Operational Research Society, 2008,59 ( 6 ) : 798 -804.
  • 9GUPTA A K, ZENG W B, WU Y. Probability and statisti- cal models:foundations for problems in reliability and finan- cial mathematics[ M]. Boston: Springer Science + Busi- ness Media, LLC, 2010.
  • 10LARSEN C, THORSTENSON A. The order and volume fill rates in inventory control systems [J ]. International Journal of Production Economics, 2014,147 : 13-19.

二级参考文献15

  • 1WANG HongRui1, YE LeTian2, XU XinYi1, FENG QiLei3, JIANG Yan1, LIU Qiong1 & TANG Qi1 1 College of Water Sciences, Key Laboratory for Water and Sediment Sciences of Ministry of Education, Beijing Normal University, Beijing 100875, China,2 School of Mathematical Sciences, Peking University, Beijing 100871, China,3 School of Science, Beijing Institute of Education, Beijing 100011, China.Bayesian networks precipitation model based on hidden Markov analysis and its application[J].Science China(Technological Sciences),2010,53(2):539-547. 被引量:4
  • 2Chung S H, Kang H Y, Pearn W L. A service level model for the control wafers safety inventory problem[J].International Journal of Advanced Manufacturing Technology , 2005,26 (5) : 591 - 597.
  • 3Croston J D. Forecasting and stock control for intermittent demands[J]. Operational Research Quarterly, 1972,42 (3):289 - 303.
  • 4Willemain T R, Smart C N, Schwarz H F. A new approach to fore- casting intermittent demand for service parts inventories [J]. Inter- national Journal of Forecasting, 2004,20 (3) : 375 - 387.
  • 5Gooijer J G D, Vidiella A A. Forecasting threshold cointegrated Systems [J].International Journal of Forecasting, 2004,20 (2) : 237 - 253.
  • 6Williams T M. Stock control with sporadic and slow-moving demand[J].Journal of the Operational Research Society, 1984,35(10) :939 - 948.
  • 7Hua Z S, Zhang B, Yang J, et al. A new approach of forecas- ting intermittent demand for spare parts inventories in the process industries [J]. Journal of the Operational Research Society, 2007,58 (1) :52 - 61.
  • 8Christian P. Forecasting stock market volatility with macroeco nomic variables in real time[J]. Journal of Economics and Business ,2008,60(3) :256 - 276.
  • 9Syntetos A A, Boylan J E. On the stock control performance of intermittent demand estimators [J].International Journal of Production Economics, 2006,103 (1) : 36 - 47.
  • 10刘吉成,牛东晓.A novel recurrent neural network forecasting model for power intelligence center[J].Journal of Central South University of Technology,2008,15(5):726-732. 被引量:6

共引文献7

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部