摘要
引入数学上的NURBS曲线来表达翼型几何,成功实现翼型几何的自动变形与重构;之后借助于Isight优化平台,集成CFD技术构建二维翼剖面的多目标自动优化设计流程;并选择NACA 661-212翼型为设计对象,在兼顾效率和空泡性能的前提下,以升阻比和最小压力系数为设计目标进行优化设计,最终得到在相应设计点处两目标均有改善的翼型。该结果表明此设计方法的可行性,对推广至三维螺旋桨的优化设计提供一定的借鉴经验。
This paper adopts NURBS curve to express the geometry of airfoil successfully, with which the geometry can be modified automatically. Then based on Isight platform, multi-objective optimization design of the two-dimension airfoil was realized automatically by integrating CFD techniques, optimization algorithms and the geometry modification approaches. Considering efficiency and cavitation performance of propeller, high Lift-Drag ratio and min-pressure coefficient are chosen as objective functions. In the procedure, NACA 661-212 airfoil is chosen to be optimized under constraint conditions by using DOE method and Particle Swarm Optimization algorithm. And Pareto optimal solution sets are obtained, among which the optimized airfoil is attained with the two aspects improved. The results show that this platform can be used for multi-objective optimization of airfoil hydrodynamic performance design. What's more, the design method is feasible and the application to three-dimension propeller design may be reasonable, so this will also help apply the method to three-dimension propeller design in the future.
出处
《舰船科学技术》
北大核心
2016年第4期56-60,共5页
Ship Science and Technology
关键词
几何重构
多目标优化
二维翼型
自动优化设计
SBD
geometry modification and deformation
multi-objectives design optimization
two-dimension airfoil
automated optimization design
SBD