期刊文献+

基于改进置信规则库推理的分类方法 被引量:4

Classification Approach Based on Improved Belief Rule-Base Reasoning
下载PDF
导出
摘要 通过引入置信规则库的线性组合方式,设定规则数等于分类数及改进个体匹配度的计算方法,提出了基于置信规则库推理的分类方法。比较传统的置信规则库推理方法,新方法中规则数的设置不依赖于问题的前件属性数量或候选值数量,仅与问题的分类数有关,保证了方法对于复杂问题的适用性。实验中,通过差分进化算法对置信规则库的规则权重、前件属性权重、属性候选值和评价等级的置信度进行参数学习,得到最优的参数组合。对3个常用的公共分类数据集进行测试,均获得理想的分类准确率,表明新分类方法合理有效。 This paper proposes a new classification approach based on improved belief rule-base reasoning by intro- ducing linear combinational mode, setting the number of rules based on the classifications and improving the method of calculating individual matching degree. Compared with the traditional belief rule-base inference methodology, the number of rules in the proposed method does not depend on the number of antecedent attributes or its referential values, and it is only related to classification number. In this way, the new method can ensure the applicability for complex problems. In the experiments, the differential evolution algorithm is applied to train parameters, including rule weights, attribute weights, referential values of antecedent attributes and belief degrees. Three commonly public datasets have been employed to validate the proposed method. And the classification results are proved to be ideal, which shows that the proposed method is reasonable and effective.
出处 《计算机科学与探索》 CSCD 北大核心 2016年第5期709-721,共13页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61300026 71371053 71501047 福建省自然科学基金No.2015J01248 国家级大学生创新创业训练计划项目No.201410386009 福州大学社科科研扶持基金No.14SKF16~~
关键词 置信规则库 基于证据推理的置信规则库推理方法(RIMER) 参数学习 分类方法 belief rule-base belief rule-base inference methodology using evidence reasoning (RIMER) parameter learning classification method
  • 相关文献

参考文献29

  • 1Yang Jianbo,Liu Jun, Wang Jin, et al. Belief rule-base infer-ence methodology using the evidential reasoning approach-RIMERfJ]. IEEE Transactions on Systems, Man and Cyber-netics: Part A Systems and Humans, 2006,36(2): 266-285.
  • 2Dempster A P. A generalization of Bayesian inference [J].Journal of the Royal Statistical Society: Series B Method-ological, 1968,30(2): 205-247.
  • 3Shafer G. A mathematical theory of evidence[M]. Prince-ton, USA: Princeton University Press, 1976.
  • 4Hwang C L,Yoon K. Methods for multiple attribute deci-sion making[M]//Multiple Attribute Decision Making. Ber-lin, Heidelberg: Springer, 1981: 58-191.
  • 5Zadeh LA. Fuzzy sets[J]. Information and Control, 1965,8(3): 338-353.
  • 6Sun R. Robust reasoning: integrating rule-based and similarity-based reasoning[J]. Artificial Intelligence, 1995,75(2): 241-295.
  • 7Zhou Zhijie, Yang Jianbo, Hu Changhua. Confidence expertsystem rule base and complex system modeling[M]. Bei-jing: Science Press,2011.
  • 8Yang Jianbo, Liu Jun, Xu Dongling, et al. Optimization mod-els for training belief-rule-based systems [J]. IEEE Transac-tions on Systems,Man and Cybernetics: Part A Systemsand Humans, 2007,37(4): 569-585.
  • 9Jiang Jiang, Li Xuan, Zhou Zhijie, et al. Weapon systemcapability assessment under uncertainty based on the evi-dential reasoning approach[J]. Expert Systems with Appli-cations, 2011,38(11): 13773-13784.
  • 10Zhou Zhijie, Hu Changhua, Yang Jianbo, et al. Online up-dating belief rule based system for pipeline leak detectionunder expert intervention[J]. Expert System with Applica-tion, 2009, 36(4): 7700-7709.

二级参考文献16

  • 1YANG J-B,LIU J,WANG J,et al.Belief rule-base inference methodology using the evidential reasoning approach-RIMER [J].IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans,2006,36(2):266-285.
  • 2SUN R.Robust reasoning:integrating rule-based and similarity-based reasoning [J].Artificial Intelligence,1995,75(2):241-295.
  • 3DEMPSTER A.A generalization of Bayesian inference [J].Journal of the Royal Statistical Society,Series B:Methodological,1968,30(2):205-247.
  • 4SHAFER G.A mathematical theory of evidence [M].Princeton:Princeton University Press,1976.
  • 5HWANG C,YOON K.Multiple attribute decision making [M].Berlin:Springer,1981.
  • 6ZADEH L.Information and control [J].Fuzzy Sets,1965,8(3):338-353.
  • 7XU D-L,LIU J,YANG J-B,et al.Inference and learning methodology of belief-rule-based expert system for pipeline leak detection [J].Expert Systems with Applications,2007,32(1):103-113.
  • 8YANG J-B,LIU J,XU D-L,et al.Optimization models for training belief-rule-based systems [J].IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans,2007,37(4):569-585.
  • 9CHEN Y-W,YANG J-B,XU D-L,et al.Inference analysis and adaptive training for belief rule based systems [J].Expert Systems with Applications,2011,38(10):12845-12860.
  • 10常瑞,王红卫,杨剑波.基于梯度法与二分法的置信规则库参数训练方法[J].系统工程,2007,25(增刊):287-291.

共引文献13

同被引文献10

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部