期刊文献+

基于形状因子的辐射地板传热量计算等效热阻模型 被引量:2

An Equivalent Thermal Resistance Model to Calculate the Heat Transfer of Radiant Floor Heating and Cooling Systems Using Shape Factor
下载PDF
导出
摘要 对辐射地板传热过程进行分析,提出了基于形状因子的辐射地板传热量计算等效热阻模型.为了验证简化模型的合理性,采用数值模拟计算结果进行验证,并与标准手册中采用的简化模型计算结果进行对比分析.结果表明,当管间距变化范围为50~250mm,换热管上端填充层厚度变化范围为25~65mm及热水平均温度变化范围为25~45℃时,ISO标准幂函数计算模型、ASHRAE手册平面肋片模型及地暖设计手册等效热阻模型计算结果与数值模拟计算结果相对误差均较大,最大分别为20.2%,30.4%和22.8%,而本文提出的基于形状因子的等效热阻模型计算结果与数值模拟计算结果相对误差较小,最大不超过3%;当管间距变化范围为50~200mm,换热管上端填充层厚度变化范围为15~55mm及冷水平均温度变化范围为10~20℃时,ISO标准幂函数计算模型、ASHRAE手册平面肋片模型及地暖设计手册等效热阻模型计算结果与数值模拟计算结果相对误差也均较大,最大分别为80.1%,17.7%和16.8%,而本文提出的基于形状因子的等效热阻模型计算结果与数值模拟计算结果相对误差较小,最大不超过2%. An equivalent thermal resistance model for the heat transfer calculation of radiant floor based on shape factor was developed in this study. The proposed model was verified by numerical simulation, and compared with the data from the universal single power function of ISO standard, the fin model in ASHARE handbook, and the equivalent thermal resistance model in design handbook. The heat transfers obtained by the numerical simulation disagreed significantly with the existing methods including the universal single power function of ISO standard, the fin model in ASHARE handbook, and the equivalent thermal resistance model in design handbook. The maximum error rates were 20.2 %, 30.4 %, and 22.8 %, respectively, when the tube space ranges from 50 to 250 mm, the thickness of fill layer above pipe ran- ges from 25 to 65 mm, and the average hot water temperature ranges from 25 to 45 ℃. On the other hand, the maximum difference of the heat transfer predictions between the proposed model and the simulation software was less than 3%. When the tube space ranges from 50 to 200 mm, the thickness of fill layer above pipe ranges from 15 to 55 mm, and the average cold water temperature ranges from 10 to 20 ℃, the maximum error rates of the heat transfer predictions between the numerical simulation and the existing methods were 80.1 %, 17.7 %, and 16.8%. On the other hand, the heat transfer predicted by the pro- posed model showed less than 2 % of difference from that of the numerical simulation.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期137-143,共7页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(51408482) 西安市科技计划项目(CXY1514(3))~~
关键词 辐射地板 传热量计算 等效热阻模型 形状因子 radiant floor heat transfer calculation equivalent thermal resistance model shape factor
  • 相关文献

参考文献16

  • 1RICHARD W, CHAPMAN K. Radiant heating and coolinghandbook [M]. New York :McGraw Hill Professional, 2002:12-15.
  • 2JAN B, OLESEN B W, KIM K W. Low temperature heatingand high temperature cooling[M]. Brussets: REHVA, 2009 :24-28.
  • 3ROBERT B, OLESEN B W, KIM K W. History of radiantheating &-cooling systems[J]. ASHRAE Journal,2010, 52(1):26-31.
  • 4MARKUS K,LEHMANN B. Thermoaktive bauteilsystemetabs [ M ]. Zurich: EMPA Ener giesysteme/Haustechnik,2000:122 - 131.
  • 5LU X,TERVOLA P, Transient heat conduction in the com-posite slab - analytical method [ J]. Journal of Physics A:Mathematical and General, 2005,38 (1) :81 -86.
  • 6ABDELAZIZ L. Development of a radiant heating and coolingmodel for building energy simulation software [J ]. Buildingand Environment, 2004, 39 (4) : 421 - 431.
  • 7李安邦,徐新华.内嵌管式辐射地板的频域热特性分析[J].湖南大学学报(自然科学版),2015,42(1):115-119. 被引量:2
  • 8SILVANA F L, FILIPPIN C,LESINO G. Transient simula-tion of a storage floor with a heating/cooling parallel pipe sys-tem[J]. Building Simulation, 2010,3 (2) : 105 - 115.
  • 9JIN Xin, ZHANG Xiao-song. Numerical simulation of radiantfloor cooling system: the effects of thermal resistance of pipeand water velocity on the performance[J]. Building and Envi-ronment ,2010,45 (11) :2545 - 2552.
  • 10LIU Yan-feng, WANG Deng-jia,LIU Jia-ping. Study on heattransfer process for in-slab heating floor[J]. Building and En-vironment, 2012,54(10) : 77 - 85.

二级参考文献15

  • 1彦启森.建筑热过程[M].北京:中国建筑工业出版社,1996..
  • 2LEHAMANN B, DORER V, KOSCHENZ M. Application range of thermally activated building systems tabs[J]. Ener- gy and Building, 2007, 39 (5): 593--598.
  • 3SIMMONDS P, HOLST S, REUSS S, et al. Using radiant cooled floors to condition large spaces and maintain comfort conditions[J]. ASHRAE Transaction, 2000,106 (1) : 695 --701.
  • 4FEUSTEL H E, STETIU C. Hydronic radiant cooling: pre- liminary assessment[J]. Energy and Buildings, 1995, 22 (3) : 193--205.
  • 5LAOUADI A. Development of a radiant heating and cooling model for building energy simulation software[J]. Energy and Buildings, 2004, 39 (4): 421--431.
  • 6ZHANG Z,PATE M B. A semi-analytical formulation for heat transfer from structures with embedded tubes[C]//The 24th National Heat Transfer Conference. Pittsburgh, Pennsylva- nia ASME-HTD, 1987,78 : 17-- 25.
  • 7KOSCHENZ M,DORER V. Interaction of an air system with concrete core conditioning[J]. Building and Environment, 1999, 30(2): 139--145.
  • 8ANTONOPOULOS K A, TZIVANIDIS C. Numerical solution of unsteady three-dimensional heat transfer during space cooling using ceiling embedded piping[J]. Energy, 1997, 22 (1): 59--67.
  • 9HO S Y, HAYES R E,WOOD R K. Simulation of the dynamic behaviour of a hydronic floor heating system[J]. Heat Re- covery Systems and CHP,1995,15(6) : 505--519.
  • 10ALBANI M,BERNARDI P. A numerical method based on the discretization of maxwell equations in integral iorm[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(4) : 446--450.

共引文献1

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部