期刊文献+

基于Voronoi图的障碍不确定数据的聚类算法 被引量:3

A clustering algorithm of uncertain data with obstacles based on Voronoi diagram
下载PDF
导出
摘要 数据采集过程中普遍存在不确定性,并且在现实地理空间中,不确定数据之间可能存在障碍物间隔。为解决障碍空间中不确定数据的聚类问题,提出APPGCUO算法,该算法包括三个过程:在障碍物约束下采用R树节点最小最大值方法提出的RPT-OUCure算法,用以生成局部最优解,提高生成局部最优解的效率;继而利用近似骨架的理论提出GIABO算法,以局部最优解生成有效初始解,避免划分聚类算法中任意初始解的不足;最后结合Voronoi图的特性提出VPT-KMediods算法,减少不确定数据的积分运算量。实验结果表明,APPGCUO算法具有较高的聚类效率和质量。 There is widespread uncertainty in the process of data collection, and there may be obsta- cles as barriers between uncertain data which are in reality geographical space. In order to solve the problem of clustering uncertain data in space with obstacles, we propose an approximate backbone guided Heuristic clustering algorithm for uncertain data with obstacles (APPGCUO), which includes three processes: using the R-tree node rain-max method to propose the R-tree pruning technique-cure for uncertain data with obstacles (RPT-OUCure), which is able to generate local optimal solution and im- proves its efficiency; then utilizing the theory of the approximate skeleton to present the generate initial- ization based on approximate backbone with obstacles (GIABO) which is in a position to generate the in- itial solution based on the local optimal solution, meanwhile can avoid the shortage of random initial so- lution of the partition clustering algorithm~ finally combining the pruning features of the Voronoi dia- gram to present the Voronoi pruning technique-KMediods (VPT-KMediods) which can reduce the inte- gral computation of uncertain data. Experimental results show that the APPGCUO algorithm has high clustering efficiency and quality.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第5期1031-1038,共8页 Computer Engineering & Science
基金 黑龙江省自然科学基金(F201302) 黑龙江省教育厅科学研究项目(12541128)
关键词 不确定数据 聚类 障碍物 R树 VORONOI图 uncertain data clustering obstacle R-tree Voronoi diagram
  • 相关文献

参考文献5

二级参考文献89

  • 1严馨,周丽华,陈克平,徐广义.一种改进的带障碍的基于密度和网格的聚类算法[J].计算机应用,2005,25(8):1818-1820. 被引量:4
  • 2周丽华,王丽珍,陈克平.带障碍的空间分级聚类算法[J].计算机科学,2006,33(5):182-185. 被引量:3
  • 3孙宇清,赵锐,姚青,史斌,刘佳.一种基于网格的障碍约束下空间聚类算法[J].山东大学学报(工学版),2006,36(3):86-90. 被引量:6
  • 4杨杨,孙志伟,赵政.一种处理障碍约束的基于密度的空间聚类算法[J].计算机应用,2007,27(7):1688-1691. 被引量:6
  • 5Tung A K H, Hou J, Han J. Spatial clustering in the presence of obstacles[ C]. In Proceedings of International Conference on Data Engineering (ICDE'01) , Heidelberg, Germany, April, 2001, 359-367.
  • 6Estivill-Castro V, Lee I J. Autoclust: automatic clustering of pointdata sets in the presence of obstacles[ C]. In Proceedings of the International Workshop on Temporal, Spatial and Spatial-Temporal Data Mining, Lyon, France, 2000, 133-146.
  • 7Tung A K H, Han J, Lakshmanan L V S, et al. Constraint-based clustering in large databases[ C]. In Proceedings of the International Conference on Database Theory ( ICDT01 ) ,London ,U. K. ,2001, 405-419.
  • 8Zaiane O R, Lee C H. Clustering spatial data when facing physical constraints[C]. In Proceedings of the IEEE International Conference on Data Mining (ICDM 02 ), Maebashi City, Japan, 2002, 737-740.
  • 9Wang X, Hamilton H J. DBRS: a density-based spatial clustering method with random sampling[ C]. In Proceedings of the 7th PAKDD, Seoul, Korea, 2003, 563-575.
  • 10Wang X,Rostoker C, Hamilton H J. DBRS + :density-based spatial clustering in the presence of obstacles and facilitators[ R/OL]. ftp. cs. uregina, ca/Research/Techreports/2004-09, pdf, 2004.

共引文献35

同被引文献18

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部