期刊文献+

基于特征点的3D人脸姿态跟踪 被引量:10

3D face pose tracking based on feature matching
下载PDF
导出
摘要 针对视频序列中的人脸跟踪问题,提出一种单摄像头的人脸3D姿态跟踪方法。利用SIFT特征点匹配算法来得到可靠的帧间特征匹配。将前帧与所选的关键帧特征匹配信息及融入到对当前的姿态估计中,利用SIFT特征点匹配算法来得到可靠的帧间特征匹配。最后通过利用RANSAC随机选取特征点对,并用POSIT和最小化误差组合的3D投影方法以迭代的方式得到精确的当前帧人脸姿态估计。通过多组实验数据对比,表明了该算法在严重遮挡、头部摆动幅度较大、匹配点较少的复杂情况干扰下仍具有鲁棒性,并且解决了3D人脸跟踪的漂移问题,实现对目标人脸的稳定跟踪,对比以往2D跟踪算法在复杂环境下具有明显的改善。 Aiming at the problem of object face tracking in the video sequence,an approach was proposed for 3D pose tracking with a single camera.SIFT (scale-invariant feature transform)algorithm is also used,which can get reliable inter-frame feature match.And the feature correspondence information from either previous frame or some selected key-frame is fused into the current frame pose estimation.The pose estimation is a classical problem which can be formulated as that of minimizing an error metric based on collinearity in object.Finally,the current face pose estimation is obtained via 3 D project from combination RANSAC and POSIT algorithm.Various set of experi-mental data shows the improvement of our algorithm over existing 2D matching algorithms especially in solving the pose drifting question when tracking agile motion,severe occlusion,drastic illumination change.
出处 《电子测量与仪器学报》 CSCD 北大核心 2016年第4期605-612,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61175075 61271382)资助项目
关键词 SIFT RANSAC随机样本一致 POSIT迭代求姿态 关键帧 3D人脸姿态跟踪 SIFT RANSAC POSIT feature points matching key-frame 3 D pose tracking
  • 相关文献

参考文献4

二级参考文献62

  • 1李刚,程志峰.基于FPGA的实时电子稳像[J].仪器仪表学报,2013,34(S1):8-13. 被引量:15
  • 2MI L, QIAO Y, YANG J, et al. Robust matching of SIFT keypoints via adaptive distance ratio thresholding [ C]. Sixth International Conference on Machine Vision (ICMV 2013), London, United Kingdom, 2013.
  • 3ZHANG T, MEI Y. Automatic image registration algo- rithm based on improved Harris corner detection [ C ]. In International Conference on Graphic and Image Pro- cessing(ICGIP 2011 ), Cairo, Egypt, 2011.
  • 4YI Z, ZHANG X, MU X, et al. SAR image registration based on SIFT and MSA [ C ]. Conference of Photoelec- tronic Technology Committee of the Chinese Society of Astronautics : Optical Imaging, Remote Sensing, and Laser-Matter Interaction, Suzhou, China, 2013.
  • 5SILPA-ANAN C, HARTLEY R. Optimised KD-trees for fast image descriptor matching[ C ]. IEEE Conference on Computer Vision and Pattern Recognition, 2008:1-8.
  • 6WANG X, XIAO B X, GUO X Y. Human-like character animation of maize driven by motion capture data[J]. In- formation : Computational Science, 2011, 8(2): 345-353.
  • 7SHIRATORI T, HODGINS J K. Accelerometer- based user interfaces for the control of a physically simulated character[J]. ACM Transactions on Graphics, 2008, 27(5): 1-9.
  • 8XIAO ZH D, NAIT-CHARIF H, ZHANG J J. Auto matic estimation of Skeletal motion from optical mo- tion capture data [J]. Computer Science, 2008, 5277: 144-153.
  • 9BLACKBURN J, RIBEIRO E. Human motion recog- nition using isomap and dynamie time warping[C]. Proceedings of the 2nd Conference on Human Motion: Understanding, Modeling, Capture and Animation, 2007: 285-298.
  • 10SHOTTON J, SHARP T, KIPMAN A, et al. Real- time human pose recognition in parts from single depth images [J]. Communications of the ACM, 2013, 56(1): 116-121.

共引文献153

同被引文献78

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2吴超仲,张晖,毛喆,初秀民,严新平.基于驾驶操作行为的驾驶员疲劳状态识别模型研究[J].中国安全科学学报,2007,17(4):162-165. 被引量:45
  • 3MARR D. Vision: Computational investigation into the human representation and processing of visual information[M]. San Francisco: University of California Press, 1982 : 107-111.
  • 4SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [ J ]. International Journal of Computer Vision, 2002, 47(1-3) : 131-140.
  • 5WANG H Q, WU M, ZHANG Y B, et al. Effective stereo matching using reliable points based graph cut [ C ]. Visual Communications and Image Processing (VCIP) , 2013,8(1) : 1-6.
  • 6LI H, CHEN G. Segment-based stereo matching using graph cuts [ C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004,1 : 1-74.
  • 7FELZENSZWALB P F, HUTTENLOCHER D P. Efficient belief propagation for early vision [ J ]. International Journal of Computer Vision, 2004, 1 ( 1 ) : 41-54.
  • 8BELHUMEUR P N,MUMFORD D. A Bayesian treatment of the stereo correspondence problem using half-occluded regions [ C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos, 1992:506-512.
  • 9KIMJ C, LEE K M, CHOI B T, et al. A dense stereo matching using two-pass dynamic programming with generalized ground control points [ C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,2(2) : 1075- 1082.
  • 10BOBICK A F, INTILLE S S. Large occlusion stereo[J]. International Journal of Computer Vision, 1999, 33 (3) : 181-200.

引证文献10

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部