期刊文献+

石墨烯/聚氨酯复合材料的合成及表征 被引量:11

Synthesis and Characterization of Graphene/Polyurethane
下载PDF
导出
摘要 用Hummers方法成功制备了氧化石墨烯,并对其进行异氰酸酯化改性,最后将改性石墨烯掺杂入由甲苯二异氰酸酯(TDI)和聚乙二醇-600(PEG-600)制备的薄膜之中,得到石墨烯/聚氨酯杂化材料。采用拉曼光谱、傅里叶变换红外光谱、X射线衍射和扫描电镜对杂化材料的结构和性能进行表征,并研究了杂化材料的水接触角及耐酸性能。结果表明,异氰酸酯成功与石墨烯的羟基或羧基反应,增加了氧化石墨烯的不规整性及单片层率。未掺杂氧化石墨烯的聚氨酯薄膜自身水接触角为126°,平衡水含量接近40%。当氧化石墨烯掺杂量为1.5%(质量分数)时,水接触角减小至80°,平衡水含量降至30%,具有"阻路效应"。此薄膜在稀盐酸中浸泡7 d后,其质量损失仅为2.5%。 Graphene oxide was synthesized by the improved Hummers method,treated with isocyanate,and used for preparation of polyurethane( PU) hybrid films,which was synthesized with tolylene diisocyanate( TDI) and polyethylene glycol-600( PEG-600). The synthesized materials were characterized by Raman spectra,Fourier transform infrared spectrometer,X-ray diffractomer and scanning electron microscope. The results show that the isocyanate could successfully react with the hydroxyl and / or carboxyl groups of graphene oxide. The isocyanate-treated graphene oxide( i GO) is of more irregularity and has higher monolithic rate than graphite and graphene oxide. The water contact angle and the equilibrium moisture content of the PU film are 126° and 40%,respectively. When 1. 5% i GO is used for the i GO-PU hybrid films,its water contact angle and the equilibrium moisture content decrease to 80° and 30%,respectively. After7 d of immersion in dilute hydrochloric acid,the film mass loss of this i GO-PU hybrid film is only 2. 5%.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2016年第5期28-32,共5页 Polymer Materials Science & Engineering
基金 国家自然科学青年基金资助项目(21304010) 江苏省自然科学青年基金资助项目(SBK201342994) 常州大学科技创新基金项目(ZMF13020026)
关键词 聚氨酯薄膜 氧化石墨烯 甲苯二异氰酸酯 聚乙二醇-600 polyurethane film graphene oxide tolylene diisocyanate polyethylene glycol-600
  • 相关文献

参考文献11

  • 1Novoselov K S, Geim A K, Mommv S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, :306: 666-669.
  • 2Zhang Y B, Tang T T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene[J ]. Nature, 2009, 459: 820- 823.
  • 3Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007, 446: 60-63.
  • 4Wei~ R T, Yacohy A. Nanomaterials: graphene rests easy[J]. Nat. Nanotechnol., 2010, 5: 699-700.
  • 5Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321: 385-388.
  • 6Nair R, Blake P, Grigorenko A, et al. Fine structure constant defines visual transparency of graphene [ J ]. Scienee, 2008, 320: 1308-1311.
  • 7Liang J, Huang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly ( vinyl alcohol) and effective reinforcement of their nanoeomposites[J]. Adv. Funet. Mater., 2009, 19: 2297- 2302.
  • 8Kim J, Cote L J, Huang J. Two dimensional soft material: new faces of graphene oxide[J]. Ace. Chem. Res., 2012, 45: 1356- 1364.
  • 9Kim H, Miura Y, Maeosko C W. Graphene/polyurethane nanoeomposites for improved gas barrier and electrical conductivity [J]. Chem. Mater. ,2010, 22: 3441-3450.
  • 10Gao Z H, Gu J Y, Wang X M, et al. FTIR and XPS study of the reaction of phenyl isocyanate and cellulose with different moisture contents[J]. Pigm. Resin Technol., 2005, 34: 282-289.

同被引文献118

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部