期刊文献+

基于直觉模糊推理的直觉模糊时间序列模型 被引量:7

Intuitionistic fuzzy time series model based on intuitionistic fuzzy reasoning
下载PDF
导出
摘要 由于受到模糊集理论的限制,模糊时间序列预测理论在不确定数据集的描述上有失客观,针对这种局限性,提出一种直觉模糊时间序列预测模型。应用模糊聚类算法实现论域的非等分划分;针对直觉模糊时间序列的数据特性,提出一种更具客观性的隶属度和非隶属度函数的确定方法;提出一种基于直觉模糊近似推理的模型预测规则。在Alabama大学入学人数和中国社会消费品零售总额数据集两组数据集上分别与典型方法进行对比实验,结果表明该模型有效提高了预测精度,证明了模型的有效性和优越性。 The objectivity of the fuzzy time series (FTS) forecasting theory in description of uncertain data sets is limited by the fuzzy sets theory. To break this limitation, an intuitionistic FTS (IFTS) forecasting model is built. Firstly, the fuzzy clustering algorithm is used to get unequal domain-dividing intervals. And then a more objective construction method of membership and non-membership functions of intuitionistic fuzzy sets (IFS) is proposed. Thirdly, forecasting rules based on intuitionistic fuzzy approximate reasoning are given. Finally, experiments on datasets of enrollments of the university of Alabama and the total retail sales of social consumer goods of China are carried out which show that the new model improves the prediction accuracy with its validity and superiority.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第6期1332-1338,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61402517) 陕西省自然科学基金(2013JQ8035)资助课题
关键词 直觉模糊时间序列 模糊聚类 隶属度函数 非隶属度函数 直觉模糊推理 intuitionistic fuzzy time series (IFTS) fuzzy cluster membership non-membership intuitionistic fuzzy reasoning
  • 相关文献

参考文献15

  • 1Song Q,Chissom B S. Fuzzy time series and its models [J].Fuzzy Sets and Systems . 1993,54(3): 269 - 277.
  • 2Song Q, Leland R P, Chissom B S. Fuzzy stochastic fuzzy timeseries and its models[J]. Fwzzy, 1997, 88(3):333 -341.
  • 3Huarng K. Effective lengths of intervals to improve forecastingin fuzzy time series[J]. Fuzzy Sets and Systems , 2001, 123(3):387 - 394.
  • 4Lu W, Pedrycz W, Liu X, et al. The modeling of time seriesbased on fuzzy information granules[J]. Expert Systems withApplications, 2014,41(8) . 3799 - 3808.
  • 5Lu W, Chen X,Pedrycz W,et al. Using interval informationgranules to improve forecasting in fuzzy time series[J]. Interna-tional Journal of Approximate Reasoning , 2015, 57: 1 - 18.
  • 6Chen C H,Chen Y S,Wu Y L. Forecasting innovation diffusionof products using trend weighted fuzzy time-series model [J].Expert Systems with Applications , 2009,36(2) ; 1826 - 1832.
  • 7Egrioglu E, Aladag C H,Yolcu U, et al. Finding an optimal in-terval length in high order fuzzy time series[J]. Expert Systemswith Applications . 2010,37(7) : 5052 - 5255.
  • 8Aladag C H* Basaran M A, Egrioglu E,et al. Forecasting inhigh order fuzzy times series by using neural networks to definefuzzy relations[J], Expert Systems with Applications . 2009,36(3): 4228 -4231.
  • 9Singh P, Borah B. An efficient time series forecasting modelbased on fuzzy time series[J]. Engineering Applications of Ar-ti ficial Intelligence * 2013,26(10): 2443 ~ 2457.
  • 10Chen S M,Chen S W. Fuzzy forecasting based on two-factorsecond-order fuzzy-trend logical relationship groups and theprobabilities of trends of fuzzy logical relationships [J]. IEEETrans, on Cybernetics , 2015,45(3) : 405 - 417.

二级参考文献6

共引文献12

同被引文献82

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部