期刊文献+

基于量测一步预测信息的自调整UKF 被引量:1

Adaptive setting of scaling parameter of UKF based on step prediction information of measurement
下载PDF
导出
摘要 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中自由调节参数的选取问题,通过研究不同的对于滤波性能的影响,提出基于量测一步预测信息的在线自调整的UKF方法。所提方法是通过根据每一滤波时刻量测的一步预测信息,对滤波参数进行选取,选出每一滤波时刻的最优滤波参数,从而实现算法的在线调整。数值仿真表明,基于量测一步预测信息的自调整UKF对于真实状态的跟踪效果要优于固定参数的无迹卡尔曼滤波。 For the adjustable parameter selection problem of κ in the unscented Kalman filter(UKF), through the study of the impact of the different κ for filtering, the method based on the step prediction information of the measurement, which is an online adjustment of the UKF, is presented. Based on the prediction information of measurement in every filtering time, the filtering parameter is selected, which is optimal and can realize the on-line adjustment. Numerical simulations show that the adjustment UKF based on the step prediction information of the measurement tracks the real state better than the traditional UKF.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第6期1395-1398,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(61403091) 中国博士后科学基金(2014T70310)资助课题
关键词 自调整 无迹卡尔曼滤波 非线性 一步预测信息 adaptive setting unscented Kalman filter (UKF) nonlinear step prediction information
  • 相关文献

参考文献16

  • 1Athans M, Wishner R P, Bertolini A. Suboptimal state estimationfor continuous time nonlinear systems from discrete noisy measure-ments[J], IEEE Trans. on Automatic Control ,1968,13(5) :504 - 514.
  • 2Kailath T. A review of three decades of linear filtering theory [J].IEEE Trans. on Automatic Control,1974, 20(2) : 146 - 181.
  • 3Anastasia D, Andreopoulos Y. Throughput-distortion computa-tion of generic matrix multiplication: toward a computationchannel for digital signal processing systems [J]. IEEE Trans,on Signal Processing , 2012, 60(4) : 2024 - 2037.
  • 4Ienkaran A, Simon H. Cubature Kalman filters [ J]. IEEETrans, on Automatic Control, 2009,54(6): 1254 - 1269.
  • 5Julier S J, Uhlman J K, Durrant-Whyte H F. A new method forthe nonlinear transformation of means and covariances in filtersand estimators[J]. IEEE Trans, on Automatic Control, 2000,45(3):477 -482.
  • 6Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter [J].Automatica,2013, 49(2) : 510-518.
  • 7Mohammad T S, Pouria S, Mostafa Z. Extended and unscented Kal-man filters for parameter estimation of an autonomous underwatervehicle[J], Ocean Engineering,2014,91(15) : 329 - 339.
  • 8Kokiopoulou E,Frossard P. Polynomial filtering for fast conver-gence in distributed consensus[J]. IEEE Trans, on Signal Pro-cessing ,2009,57(1) : 342 - 354.
  • 9Jinwhan K. Vaddi S S,Menon P K, et al. Comparison betweennonlinear filtering techniques for spiraling ballistic missile stateestimation[J], IEEE Trans, on Aerospace and Electronic Sys-tems , 2012, 48(1): 313 -328.
  • 10Bisht S S, Singh M P. An adaptive unscented Kalman filter fortracking sudden stiffness changes[J]. Mechanical Systems andSignal Processing,2014,49(1/2) :181 - 195.

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部