摘要
通过分析一个供应商用多个相同车辆向多个客户配送一种易腐品,在随机需求下,满足多个周期中客户的服务水平、决策计划期内的配送路线和配送量,以库存持有成本、货损成本、运输成本最小化为目标,建立随机需求的多周期易腐品库存路径问题模型,将库存控制和运输问题整合优化。还针对该模型设计了一种改进的遗传算法,能够保证初始种群以及变异、交叉后的种群的多样性和优越性,有足够搜索全局最优解的能力。
In this paper, through analyzing the system where a supplier delivered one perishable goods to multiple customers using multiple vehicles of the same kind, we satisfied the service level requirement of the customers in different cycles under stochastic demand,obtained the distribution route and volume, and then established the multi-cyclic perishable goods inventory routing model under stochastic demand aiming at minimizing the inventory holding cost, cargo loss cost, and transportation cost. Then we designed a modified genetic algorithm to solve the model so as to ensure the diversity and superiority of the initial and the post-mutation population and the ability to reach global optimization.
出处
《物流技术》
2016年第4期91-96,共6页
Logistics Technology
关键词
库存路径问题
多周期
易腐品
遗传算法
inventory routing problem
multi-cyclic
perishable goods
genetic algorithm