期刊文献+

火星进入的气动力特性预测模型分析 被引量:4

Model Analysis for Predicting Aerodynamic Characteristics of Mars Entry
下载PDF
导出
摘要 针对火星探测器的高超声速进入问题,利用三维并行程序求解流体力学Navier-Stokes方程,分别考虑真实气体模型和完全气体模型,分析模型及参数对气动力特性预测的影响,旨在得到准确、高效和可靠的火星进入器气动力特性预测模型.采用真实气体模型对海盗号进行了沿飞行轨道的数值模拟,气动力特性预测结果与飞行数据一致,验证了火星大气热化学模型及数值方法.分别采用真实气体模型和完全气体模型对海盗号升力式进入和探路者号零攻角进入进行了气动力特性预测,结果表明采用等效比热比的完全气体模型的预测值非常接近真实气体模型,偏差均在1%左右,配平攻角相差约0.4°,来流比热比模型的气动力特性预测值偏差很大.火星进入器的气动力预测建议采用真实气体模型和等效比热比完全气体模型. Martian atmosphere which is quite different from Earth atmosphere plays an important role for Mars entry vehicles. Therefore aerodynamic predictions for trajectory design and layout optimization should be settled firstly. Three-dimensional Navier-Stokes equations with real gas model and ideal gas model have been solved by a parallel code to analyze the impact of different models on aerodynamic characteristics, to obtain accurate, efficient and reliable model for aerodynamic predictions. The good agreement among the numerical results, the reference values and the flight data of Viking along the trajectory validates the real gas physical-chemical models and the numerical methods applied. Using real gas model and ideal gas model, aerodynamic characteristics of lift-entry Viking and zero angle of attack Mars Pathfinder have been predicted. The results show that predicts value of ideal gas model with effective specific heat ratio is very close to that of the real gas model, the deviation is about 1%, and the difference of the trim angle of attack is about 0.4°. Prediction of ideal gas with specific heat ratio from inflow temperature shows a large deviation. Real gas model and ideal gas model with effective specific heat ratio are suggested in aerodynamic characteristics predictions of Mars entry.
出处 《空间科学学报》 CAS CSCD 北大核心 2016年第3期344-351,共8页 Chinese Journal of Space Science
基金 国家自然科学基金项目资助(11402251)
关键词 火星大气 高超声速进入 气动力特性 真实气体效应 等效比热比 Martian atmosphere, Hypersonic entry, Aerodynamic characteristics, Real gas effect,Effective specific heat ratio
  • 相关文献

参考文献16

  • 1BRAUN R D, MANNING R M. Mars exploration entry, descent and landing challenges[J]. J. Spacecraft Rockets, 2007, 44(2):310-323.
  • 2WRIGHT M J, TANG C Y, EDQUIST K T, et al. A review of aerothermal modeling for Mars entry missions[R]. AIAA paper 2010-443, 2010.
  • 3DRUGUET M C. Prediction of the flow field over an orbiter entering the Mars atmosphere[J]. Shock Waves, 2010, 20(3):251-261.
  • 4VIVIANI A, PEZZELLA G. Aerodynamic Analysis of a capsule vehicle for a manned exploration mission to Mars[R]. AIAA paper 2009-7386, 2009.
  • 5INGOLDBY R N, MICHEL F C, FLAHERTY T M, et al. Entry Data Analysis for Viking Landers 1 and 2 Final Report[R]. NASA CR-159388, 1976.
  • 6GNOFFO P A, BRAUN R D, WEILMUENSTER K J, et al. Prediction and Validation of Mars Pathfinder Hypersonic Aerodynamic Database[J]. J. Spacecraft Rockets, 1999, 36(3):367-373.
  • 7GNOFFO P A, WEILMUENSTER K J, BRAUN R D, et al. Influence of sonic-line location on Mars Path-fin-der Probe aerothermodynamics[J]. J. Spacecraft Rockets, 1996, 33(2):169-177.
  • 8SCHOENENBERGER M, CHEATWOOD F M, DESAI P N. Static aerodynamics of the Mars Exploration Rover entry capsule[R]. AIAA Paper 2005-0056, 2005.
  • 9Lü Junming, CHENG Xiaoming, WANG Qiang. Flow field prediction of an orbiter entering the Mars atmosphere[J]. Chin. J. Space Sci., 33(2):129-134.
  • 10Lü Junming, MIAO Wenbo, CHENG Xiaoli, et al. Impact of Martian atmosphere model parameters on aerodynamic characteristics of Mars Science Laboratory[J]. Chin. J. Space Sci., 34(4):377-383.

二级参考文献11

  • 1Braun R D, Manning R M. Mars exploration entry, descent and landing challenges [J]. J. Spacec. Rocket., 2007, 44(2):310-323.
  • 2Wright M J, Tang C Y, Edquist K T, et al. A Review of Aerothermal Modeling for Mars Entry Missions [R]. AIAA paper, 2010. 2010-443.
  • 3Druguet M C. Prediction of the flow field over an orbiter entering the Mars atmosphere[J]. Shock Waves, 2010,20:251-261.
  • 4Viviani A, Pezzella G. Aerodynamic Analysis of a Capsule Vehicle for a Manned Exploration Mission to Mars [R]. AIAA paper, 2009. 2009-7386.
  • 5Mark S, Artem D, Pieter B, et al. Aerodynamic challenges for the Mars Science Laboratory entry, descent and landing [R]. AIAA paper, 2009. 2009-3914.
  • 6Dyakonov A, Edquist K, Shoenenberger M. Influence of the Angle of Attack on the Aerothermodynamic Environment of the Mars Science Laboratory [R]. AIAA paper, 2006, 2006-3889.
  • 7Mitcheltree R A, Gnoffo P A. Wake flow about the Mars Pathfinder entry vehicle [J]. J. Spacec. Rocket., 1995, 32(5):771-776.
  • 8Park C, Howe J, Jaffe R, et al. Review of chemical-kinetic problems of future NASA missions, II: Mars entries [J]. J. Thermophys. Heat Trans., 1994, 8(1):9-23.
  • 9Kim K H, Kim C, Rho O H. Methods for the accurate computations of hypersonic flows: I. AUSMPW+ scheme [J]. J. Comput. Phys., 2001, 174:38-80.
  • 10吴季,朱光武,赵华,王赤,李磊,孙越强,郭伟,黄乘利.萤火一号火星探测计划的科学目标[J].空间科学学报,2009,29(5):449-455. 被引量:30

共引文献14

同被引文献46

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部