期刊文献+

面向水下测距的混沌调制激光雷达 被引量:6

Chaotic Modulation Lidar for Underwater Ranging
原文传递
导出
摘要 提出一种用于水下测距的混沌调制激光雷达方案,并进行了实验验证。该方案利用布尔混沌电路产生的混沌电信号调制半导体激光器,获得532nm混沌激光,并将其分成两束,分别作为探测光信号和参考光信号。将探测光信号入射到1.5m×0.3m×0.3m的水槽中,直接照射水下探测目标。经目标反射回的探测光信号和参考光信号分别经过光电探测器转换成电信号,再利用相关运算即可获取水下目标的距离。经过原理性实验验证,获得的最小和最大探测距离分别为0.14m和1.36m,距离分辨率为51cm,目标测距结果的平均误差在2.3cm以内。该混沌调制激光雷达具有测量盲区小、结构简单的特点,可作为一种新的水下目标测距技术。 A chaotic modulation lidar for underwater ranging is proposed and demonstrated experimentally. The 532 nm chaotic laser is generated by a chaotic electrical signal produced by a Boolean chaotic circuit directly modulating the diode laser. It is divided into two beams as the probe light and the reference light signal, respectively. The probe light signal is injected into a water tank of 1.5 m× 0.3 m × 0.3 m to directly illuminate the underwater target. The probe light reflected from the target and the reference light are separately converted into the electrical signals by the photoelectric detector. The distance of the underwater target can be achieved by the cross-correlation between both of the electrical signals. Through the theoretical experiment demonstration, the minimum and maximum detection distance of 0.14 m and 1.36 m are obtained respectively. The range resolution is 51 cm and the average error of the target ranging results is within 2.3 cm. The chaotic lidar can be a new technology of underwater ranging owing to its essential characteristics of the small measuring blind area and the simple structure.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第5期232-239,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61205142 61377089 61527819 51404165) 山西省自然科学基金(2015011049)
关键词 激光技术 混沌 激光雷达 水下测距 相关法 532 nm激光 laser technique chaos lidar underwater ranging correlation 532 nm laser
  • 相关文献

参考文献15

  • 1梁民赞,孟华,陈迎春,卢克华.水声环境复杂性对声呐探测距离的影响[J].舰船科学技术,2013(4):45-48. 被引量:17
  • 2Klepsvik J O, Bjarnar M, Brosstad P O, et al.. A novel laser radar system for subsea inspection and mapping[C]. OCEANS′94 Oceans Engineering for Today′s Technology and Tomorrow′s Preservation, Proceedings, 1994, 2: 700-705.
  • 3Arshad M R, Lucas J. Underwater optical ranging system for ROV′s[C]. OCEANS′98 Conference Proceedings, 1998, 2: 1189-1193.
  • 4Illig D W, Jemison W D, Rumbaugh L, et al.. Enhanced hybrid lidar-radar ranging technique[C]. Oceans-San Diego, 2013:1-9.
  • 5Chantler M J, Clark J, Umasuthan M. Calibration and operation of an underwater laser triangulation sensor: The varying baseline problem[J]. Optical Engineering, 1997, 36(9): 2604-2611.
  • 6杨芳,张鑫,贺岩,陈卫标.基于不同伪随机码调制的光纤激光测距系统[J].中国激光,2014,41(6):270-275. 被引量:14
  • 7王国超,颜树华,杨俊,林存宝,魏春华,杜志广.基于飞秒光梳互相关的空间精密测距理论模型分析[J].光学学报,2015,35(4):167-175. 被引量:12
  • 8Cochenour B, Mullen L, Muth J. Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging[J]. Applied Optics, 2011, 50(33): 6168-6178.
  • 9Rumbaugh L K, Bollt E M, Li Y F, et al.. A 532 nm chaotic lidar transmitter for high resolution underwater ranging and imaging[C]. Oceans-San Diego, 2013: 1-6.
  • 10Zhang J G, Xu H, Wang B J, et al.. Wiring fault detection with Boolean-chaos time-domain reflectometry[J]. Nonlinear Dynamics, 2015, 80(1-2): 553-559.

二级参考文献67

共引文献44

同被引文献39

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部