期刊文献+

基于FBG铥钬共掺光纤放大器反向ASE的再利用 被引量:1

Reusing the Backward ASE in Tm-Ho Co-Doped Fiber Amplifiers Based on FBG
原文传递
导出
摘要 针对铥钬共掺光纤放大器在放大2μm以上长波段信号光时因存在反向放大的自发辐射(ASE)而造成的放大效率浪费的问题,提出了在放大器输入端插入一个中心波长为1950nm的光纤光栅(FBG)的方案,并从理论上研究了光栅参数对放大器在2μm以上波段增益特性的影响。通过数值模拟给出了几种不同的铥钬掺杂比例下、有无FBG时,放大器对2040nm信号光的增益随光纤长度的变化曲线,分析了插入FBG后放大器最大增益和对应的最佳光纤长度的变化,以及这种变化对铥钬掺杂比例的依赖性。通过模拟放大器输入端的反向ASE光谱,以及抽运光、信号光、ASE与FBG反射光功率沿光纤传输的演化行为,解释了FBG对放大器产生影响的根本原因,并进一步指出为提高放大器长波段增益而加入短波段FBG的适用条件。并初步研究了加入FBG对放大器增益谱及噪声特性的影响。 Regarding to the problem that the backward amplified spontaneous emissions(ASE)in Tm-Ho co-doped fiber amplifier reduce the amplification efficiency beyond 2μm band,the influence on gain property beyond 2μm band by inserting a 1950 nm fiber Bragg grating(FBG)into the input terminal of the amplifiers with different Tm/Ho doping ratios is studied theoretically.Simulation results of the 2040 nm signal gain over the fiber length with or without FBG are given under several different Tm/Ho doping ratios in order to analyze the variations of maximum gain and corresponding optimal fiber length due to the insertion of FBG,as well as the dependence of the variations on Tm/Ho doping ratio.The influence of FBG is explained through simulating the backward ASE spectrum at z=0,and the propagation of pump,signal,ASE and reflected light from FBG along the fiber.Discussions on the simulation results further point out the applicable conditions of short-band FBG for improving long-band gain of amplifier.In addition,the influences on gain spectrum and noise characteristics by FBG are also investigated.
出处 《中国激光》 EI CAS CSCD 北大核心 2016年第5期143-151,共9页 Chinese Journal of Lasers
关键词 光纤光学 光纤放大器 铥钬共掺 2μm以上波段 放大自发辐射 光纤布拉格光栅 fiber optics fiber amplifier Tm-Ho co-doped beyond 2μm band amplified spontaneous emission fiber Bragg grating
  • 相关文献

参考文献22

  • 1刘江,师红星,刘昆,侯玉斌,王璞.210W全光纤结构单频、单偏振掺铥光纤激光器[J].中国激光,2014,41(5):139-139. 被引量:2
  • 2王礼,杨经纬,蔡旭武,王金涛,吴海信,吴先友,江海河.2.09μm纳秒钬激光抽运的磷锗锌光参量振荡器[J].中国激光,2014,41(1):37-40. 被引量:12
  • 3吕涛,张伟,陈昉.光纤传输调Q铥激光微外科手术刀切割生物软组织实验研究[J].光学学报,2014,34(11):257-262. 被引量:5
  • 4Scholle K, Lamrini S, Koopmann P, et al: 2μ m laser sources and their possible applications [M]//Bishnu Pal. Frontiers in Guided Wave Optics and Optoelectronics. Rijeka: INTECH, 2010: 471-500.
  • 5Geng J, Wang Q, Jiang S. 2 μm fiber laser sources and their applications[C]. SHE, 2011, 8164: 816409.
  • 6Walsh B M. Review of Tm and Ho materials: Spectroscopy and lasers[J]. Laser Physics, 2009, 19(4) : 855-866.
  • 7Oh K , Morse T F, Kilian A, et al: Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser [J]. Optics Letters, 1994, 19(4): 278-280.
  • 8Jackson S D, Mossman S. High-power diode-cladding-pumped Tm3+ , Ho3+-doped silica fibre laser[J] . Applied PhysicsB, 2003, 77(5): 489-491.
  • 9Yuen T, Billy R, David B, et al: Tm3+/Ho3+ codoped tellurite fiber laser[J]. Optics Letters, 2008, 33(11): 1282- 1284.
  • 10Xue G, Zhang B, Yin K, et al: All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[C]. SPIE, 2015, 9255: 92550U.

二级参考文献26

  • 1Lee J, Ryu U C, Aim S J,et al. IEEE Photon Tech Lett.1999,11:42-44.
  • 2Zhang Y, Liu X, Peng J. L-band EDFA gain enhancement and dynamic working range enlarging by C-band laser injection. APOC2001.
  • 3Oh J M, Choi H B, Lee D,et al. Opt lett 2002, 27:589-591.
  • 4Ellis A D, Percival R M. Automatic gain control in cascaded erbium-doped fiber amplifier systems. Electronics Letters 31 st, 1991,27(3).
  • 5Zhang Yanbin, Liu Xiaoming,Peng Jiangde, et al. Wavelenth and power dependence of injected C-band laser on pump conversion efficiency of L-band EDFA. Photonics Teclmol, 2002,14(3).
  • 6B M Walsh. Review of Tm and Ho materials: Spectroscopy and lasers[J]. Laser Phys, 2009, 19(4): 855-856.
  • 7N M Fried. High-power laser vaporization of the canine prostate using a 110 W thulium fiber laser at 1.91 μm [J]. Lasers Surg Med, 2005, 36(1):52-56.
  • 8G Wendt-Nordahl, S Huckele, P Honeck, et al.. Systematic evaluation of a recently introduced 2 μm continuous-wave thulium laser for vaporesection of the prostate[J]. J Endourol, 2008, 22 (5): 1041-1045.
  • 9L H Wang, Z X Wang, B Yang, et al.. Thulium laser urethrotomy for urethral stricture: A preliminary report[J]. Lasers Surg Med, 2010, 42(7): 620-623.
  • 10D Theisen-Kunde, S Tedsen, C Doehn, et al.. Comparison between a 1.92 μm fiber laser and a standard HF-dissection device for nephron-sparing kidney resection in a porcine in vivo study [J]. LasersMedSei, 2011, 26(4): 509-514.

共引文献17

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部