期刊文献+

多小波阈值的遗传算法消噪变异 被引量:2

Denoising mutation of genetic algorithm on multiwavelet thresholding
下载PDF
导出
摘要 编码问题是遗传算法研究的难点。浮点数编码在函数和约束优化中明显优于其他编码,并能提高算法的局部搜索能力。浮点数编码在遗传环境中产生的噪音和对算法性能的影响,正在被研究者所关注。但目前尚无基于多小波阈值实现浮点数编码消噪变异的研究成果出现。首先研究了多小波和浮点数编码噪音的性质,提出了一种基于多小波阈值的浮点数编码消噪变异方法,并与其他算法进行比较实验。研究和实验结果表明,这种方法可明显提高算法的收敛精度和速度,改善算法的整体性能。 Coding issue is a difficult problem of Genetic Algorithm(GA)research. Floating Point Representation(FPR)is superior to other codes in function optimization and restriction optimization. FPR can improve local search performance of GA. Lately, the attention of researches is attracted to the noises generated by FPR in genetic environment and its influence on algorithm performance. But few research result is emerged on FPR denoising mutation based on multiwavelet thresholding. In this paper, the properties of multiwavelet and FPR noises are researched, the method of FPR denoising mutation is presented on multiwavelet thresholding, the experiments are carried out by the author. The experiment result is compared with other method. The results of the research and the experiments indicate which the method can raise the convergence precision and velocity of the algorithm, improve whole performance of the algorithm.
作者 崔明义
出处 《计算机工程与应用》 CSCD 北大核心 2016年第10期1-5,8,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61202285) 河南省科技攻关资助项目(No.132102210138)
关键词 多小波 阈值 浮点数编码 消噪变异 遗传算法 multiwavelet threshold Floating Point Representation(FPR) denoising mutation genetic algorithm
  • 相关文献

参考文献15

  • 1周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001.
  • 2Michalewicz Z.Genetic algorithms and optimal control problem[C]//Proc of 29th IEEE Conf on Decision and Control,1990:1664-1666.
  • 3Jomikow C Z,Michalewicz Z.An experimental comparison of binary and floating point representations in genetic algorithm[C]//Proc of 4th Conf on Genetic Algorithms.[S.l.]:Morgan Kaufmann,1991:31-36.
  • 4Eshelman L,Schaffer J.Real-coded genetic algorithms and interval schemata[M]//Whitley L.Foundations of genetic algorithms.San Francisco:Morgan Kaufmann Publishers,1993:187-202.
  • 5Walters G A,Smith D K.Evolutionary design algorithm for optimal layout of tree networks[J].Engineering Optimization,1995,24:261-281.
  • 6Cui Mingyi,Zhang Xinxiang,Mi Huichao.Research on threshold denoising of FPRGA[C]//Proceedings of the 8th International Conference on Software Engineering,Artificial Intelligence,Networking,and Parallel/Distributed Computing(SNPD 2007).IEEE,2007,1:1-8.
  • 7崔明义.2-Adic MRA的浮点数编码遗传算法[J].计算机工程与应用,2015,51(15):12-16. 被引量:2
  • 8崔明义,邵超.基于适应小波收缩的浮点数编码遗传算法[J].计算机应用,2014,34(7):2071-2073. 被引量:5
  • 9Mariani V C,Luvizotto Luiz L G J,Luvizotto G J,et al.A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization[J].Applied Mathematics and Computation,2011,217:5822-5829.
  • 10Yoon Y,Kim Y H,Moraglio A,et al.A theoretical and empirical study on unbiased boundary-extended crossover for real-valued representation[J].Information Sciences,2012,183:48-65.

二级参考文献28

  • 1ESHELMAN L,SCHAFFER J.Real-coded genetic algorithms and interval schemata[M].San Francisco:Morgan Kaufmann Publishers,1993:187-202.
  • 2McCORMICK W T,SCHWEITZER P J,WHITE T W.Problem decomposition and data reorganization by a cluster technique[J].Operations Research,1972,20(5):993-1009.
  • 3MICHALEWICZ Z.Genetic algorithm + data structure =evolution programs[M].3rd ed.Berlin:Springer-Verlag,1996.
  • 4WALTERS G A,SMITH D K.Evolutionary design algorithm for optimal layout of tree networks[J].Engineering Optimization,1995,24(4):261-281.
  • 5CUI M Y,SHANGGUAN Y L.Research on float-coded genetic algorithm based on wavelet denoising mutation[C]// Proceedings of the 3rd International Conference on Natural Computation.Piscataway:IEEE,2007:804-809.
  • 6CUI M Y.An improved float-coded genetic algorithm based on wavelet denoising mutation[C]// Proceedings of the 7th World Congress on Intelligent Control and Automation.Piscataway:IEEE,2008:4018-4023.
  • 7CUI M Y.FPRGA based on construction of multiwavelets in term of a novel transformation[C]// Proceedings of the 5th International Conference on Natural Computation.Piscataway:IEEE,2009:244-248.
  • 8CUI M,SUN B.RWS-based floating point representation genetic algorithm[J].Journal of Convergence Information Technology,2012,7 (17):459-467.
  • 9MARIANI V X,LUVIZOTTO G J,GUERRA F A.A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization[J].Applied Mathematics and Computation,2011,217 (15):5822-5829.
  • 10YOON Y,KIM Y-H,MORAGLIO S,et al.A theoretical and empirical study on unbiased boundary-extended crossover for realvalued representation[J].Information Sciences,2012,183 (1):48-65.

共引文献51

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部