期刊文献+

基于自适应变异的混沌粒子群优化算法 被引量:13

Chaotic particle swarm optimization algorithm with adaptive mutation
下载PDF
导出
摘要 粒子群优化算法参数少,寻优速度快,但其寻优效率低且在寻优后期易早熟收敛。为改善其寻优性能,在标准粒子群优化算法中,通过引入混沌映射和自适应变异策略,提出具有自适应变异的混沌粒子群优化(ACPSO)算法,以增强种群的全局寻优性能和局部寻优效率。六个基准测试函数的仿真结果表明,ACPSO算法比已有的五个算法具有更好的寻优能力。 Basic particle swarm optimization algorithm has fewer parameters and fast optimization speed, but it suffers some drawbacks such as low optimization efficiency and falling easily into local optimal point in the optimization process. To improve the global optimization performance and local optimization efficiency of particle swarm optimization algorithm, this paper proposes a chaotic particle swarm optimization algorithm with adaptive mutation(ACPSO)by introducing a chaotic mapping and an adaptive strategy. Compared to five existing algorithms, numerical results on six benchmark test functions indicate that ACPSO algorithm has better performance.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第10期44-49,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61273311) 中央高校基本科研业务费专项基金资助(No.GK201001002)
关键词 粒子群优化 自适应策略 混沌映射 数值优化 particle swarm optimization adaptive strategy chaotic map numerical optimization
  • 相关文献

参考文献19

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,1995:1942-1948.
  • 2Wong K,Man K P,Li S,et al.A more secure chaotic cryptographic scheme based on dynamic look-up table circuits[J].Systems Signal Process,2005,24(5):571-584.
  • 3Suneel M.Chaotic sequences for secure CDMA[C].Ramanujan Institute for Advanced Study in Mathematics,2006:1-4.
  • 4Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,1999:1945-1950.
  • 5Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Trans on Evolutionary Computation,2004,8(3):240-255.
  • 6池元成,方杰,蔡国飙.基于差分进化和粒子群优化算法的混合优化算法[J].计算机工程与设计,2009,30(12):2963-2965. 被引量:26
  • 7段玉红,高岳林.基于差分演化的粒子群算法[J].计算机仿真,2009,26(6):212-215. 被引量:19
  • 8徐青鹤,刘士荣,吕强.一种改进的粒子群算法[J].杭州电子科技大学学报(自然科学版),2008,28(6):103-106. 被引量:6
  • 9Caponetto R,Fortuna L,Fazzino S,et al.Chaotic sequences to improve the performance of evolutionary algorithms[J].IEEE Trans on Evolutionary Computation,2003,7(3):289-304.
  • 10孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76

二级参考文献29

共引文献560

同被引文献159

引证文献13

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部