期刊文献+

情感分析在电影推荐系统中的应用 被引量:15

Applications of sentiment analysis in movie recommendation system
下载PDF
导出
摘要 基于用户的协同过滤推荐算法是通过分析用户行为寻找相似用户的集合,其核心是用户兴趣模型的建立以及用户间相似度的计算。传统的用户推荐算法是根据用户评分或者物品信息等行为数据进行个性化推荐,准确率比较低。充分考虑在线评论对于用户之间兴趣相似度的作用,通过对评论的情感分析,构建准确的用户兴趣模型,若用户在评论中表现出来的相似度越高,则表示用户之间的兴趣越相似。实验表明,和传统的基于用户的协同过滤推荐算法相比,基于评论情感分析的协同过滤推荐算法,无论准确率还是召回率都有明显提高。 User-based collaborative filtering algorithm find a set of similar users by analyzing user behavior, and its core is to establish interest model and calculate similarity between the users. Traditional user recommend algorithm produces personalized recommendation based on user ratings, or the information of items and other user behavior data, the accuracy rate of it is relatively low. Giving full consideration to online reviews for the influence of similarity between user interests,the accurate user interest model is built by the sentiment analysis of reviews, if the higher the degree of similarity the user manifested in the reviews, it means more similar interest among users. Experimental results show that, compared to the traditional user-based collaborative filtering recommendation algorithm, the accuracy and the recall are both significantly improved in collaborative filtering recommendation algorithm based on the sentiment analysis of reviews.
作者 雷鸣 朱明
出处 《计算机工程与应用》 CSCD 北大核心 2016年第10期59-63,107,共6页 Computer Engineering and Applications
基金 国家科技支撑计划课题(No.2012BAH73F02) 安徽省科技攻关项目(No.1301b042012)
关键词 协同过滤 在线评论 兴趣模型 情感分析 collaborative filtering online reviews interest model sentiment analysis
  • 相关文献

参考文献14

  • 1李维杰.情感分析与认知[J].计算机科学,2010,37(7):11-15. 被引量:8
  • 2佘正炜,钱松荣.基于神经网络的文本倾向性分析系统的研究[J].微型电脑应用,2011(12):20-23. 被引量:2
  • 3Ortony A,Clore G L,Collins A.The cognitive structure of emotions[M].UK:Cambridge University Press,1988.
  • 4Breazeal C.Emotion and sociable humanoid robots[J].International Journal of Human-Computer Studies,2003,59(1/2):119-155.
  • 5滕少东.应用于个人机器人的人工计算模型研究[D].北京:北京科技大学,2006.
  • 6Li Dong,Wei Furu,Tan Chuanqi,et al.Adaptive recursive neural network for target-dependent Twittwer sentiment classification[C]//Proceedings of ACL,2014.
  • 7Kalchbrenner N,Grefenstette E,Blunsom P.A convolutional neural network for modeling sentences[C]//Proceedings of ACL,2014.
  • 8Yin P,Wang H W,Guo K Q.Feature-opinion pair identification of product reviews in Chinese:A domain ontology modeling method[J].New Review of Hypermedia and Multimedia,2013,19(1):3-24.
  • 9Alam M H,Lee S K.Semantic aspect discovery for online reviews[C]//Proceedings of the 2012 IEEE 12th International Conference on Data Mining.[S.l.]:IEEE Computer Society,2012:816-821.
  • 10吴月萍,王娜,马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,21(10):73-76. 被引量:14

二级参考文献111

共引文献59

同被引文献153

引证文献15

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部