期刊文献+

面向医学领域实体关联检索的深网数据源选择 被引量:1

Deep web data source selection for entity association retrieval in the area of medicine
下载PDF
导出
摘要 每个领域下的深网数据源众多,如果检索领域内所有深网以获取所需的集成信息,那么工作量将十分巨大,因而数据源选择技术应运而生。医学领域实体间存在着丰富的关联关系,把相关关联信息进行有效集成可以促进人们健康生活。为提升医学领域实体关联的信息集成效率,提出了一种基于实体关联特征的数据源选择方法。基于实体关联图中的实体权重以及链接信息,构建了实体关联矩阵摘要;基于实体关联查询意图提出了数据源相关性计算方法。利用领域数据集进行了大量的实验,结果表明所提出方法准确率和召回率较高,可以为医学领域信息集成提供有效支撑。 There is lots of deep web in each field, if people retrieve all deep web in an area to obtain the required information,the workload is very huge. For the above reason, the data source selection technology is introduced. There are rich relationships among entities in the area of medicine, effectively integrate the entity association can promote the people's health.In order to enhance the efficiency of information integration for entity association, proposing a data source selection method based on the characteristics of the associated entities. Firstly, construct a matrix summary of entity association based on weight and link information; Secondly, propose a correlation calculation method of data source based on the query intent.A number of experiments based on field data collection are conducted, the result show that our method's accuracy and recall are higher. So, it can provide a effective support to the entity integration in medical field.
作者 邓松 陈辉
出处 《计算机工程与应用》 CSCD 北大核心 2016年第10期135-140,共6页 Computer Engineering and Applications
基金 国家自然科学基金项目(No.61462037 No.61262033 No.61563016) 江西省自然科学基金(No.20142BAB217014 No.20142BAB207009) 江西省教育厅科技项目(No.GJJ13303)
关键词 数据源选择 摘要 医学 实体关联 data source selection summary biomedical literature entity association
  • 相关文献

参考文献18

  • 1Callan J,Lu Z H,Croft W.Searching distributed collections with inference networks[C]//Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR’95).New York:ACM,1995:21-28.
  • 2Si L,Callan J.Unified utility maximization framework for resource selection[C]//Proceedings of the 13th ACM Int’l Conf on Information and Knowledge Management(CIKM’04).New York:ACM,2004:32-41.
  • 3Milad S.Central-rank-based collection selection in uncooperative distributed information retrieval[C]//Proceedings of the 29th European Conference on IR Research.Heidelberg:Springer-Verlag,2007:160-172.
  • 4万常选,邓松,刘喜平,廖国琼,刘德喜,江腾蛟.Web数据源选择技术[J].软件学报,2013,24(4):781-797. 被引量:16
  • 5Ipeirotis P G,Gravano L.Classification-aware hidden-Web text database selection[J].ACM Transactions on Information Systems(TOIS),2008,26(2):1-66.
  • 6Hong D,Si L,Bracke P,et al.A joint probabilistic classification model for resource selection[C]//Proceedings of the33rd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR’10).New York:ACM,2010:98-105.
  • 7Markov I,Azzopardi L,Crestani F.Reducing the uncertainty in resource selection[C]//Proceedings of the 35th European Conf on IR Research(ECIR 2013).Heidelberg:SpringerVerlag,2013:507-519.
  • 8Hong D,Si L,Search result diversification in resource selection for federated search[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR’13).New York:ACM,2013:613-622.
  • 9Dong X L,Saha B,Srivastava D.Less is more:selecting sources wisely for integration[C]//Proceedings of the 39th Int’l Conf on Very Large Data Bases(VLDB 2013).San Francisco:Morgan Kaufmann Publishers,2013:37-48.
  • 10Rekatsinas T,Dong X L.Finding quality in quantity:the challenge of discovering valuable sources for integration[C]//Proceedings of the 7th Biennial Conference on Innovative Data Systems Research(CIDR’15).New York:ACM,2015:1-7.

二级参考文献54

  • 1刘伟,孟小峰,孟卫一.Deep Web数据集成研究综述[J].计算机学报,2007,30(9):1475-1489. 被引量:136
  • 2Chang KCC, He B, Li CK, Patel M, Zhang Z. Structured databases on the Web: Observations and implications. SIGMOD Record, 2004,33(3):61-70.
  • 3BrightPlanet.com. The deep Web: Surfacing hidden value. 2000. http://brightplanet.com
  • 4He H, Meng WY, Yu C, Wu ZH. WISE-Integrator: An automatic integrator of Web search interfaces for e-commerce. In: Proc. of the 29th Int'l Conf. on Very Large Data Bases. San Fransisco: Morgan Kaufmann Publishers, 2003.357-368.
  • 5Wu WS, Yu C, Doan AH, Meng WY. An interactive clustering-based approach to integrating source query interfaces on the deep Web. In: Proc. of the 24th ACM SIGMOD Int'l Conf. on Management of Data. Paris: ACM Press, 2004. 95-106.
  • 6Peng Q, Meng WY, He H, Yu C. WISE-Cluster: Clustering e-commerce search engines automatically. In: Proc. of the 6th ACM Int'l Workshop on Web Information and Data Management. Washington: ACM Press, 2004. 104-111.
  • 7He B, Tao T, Chang KCC. Clustering structured Web sources: A schema-based, model-differentiation approach. In: Proc. of the 9th Int'l Conf. on Extending Database Technology. Heraklion: Springer-Verlag, 2004. 536-546.
  • 8Zhao HK, Meng WY, Wu ZH, Raghavan V, Yu C. Fully automatic wrapper generation for search engines. In: Proc. of the 14th Int'l World Wide Web Conf. Chiba: ACM Press, 2005.66-75.
  • 9Zhai YH, Liu B. Web data extraction based on partial tree alignment. In: Proc. of the 14th Int'l World Wide Web Conf. Chiba: ACM Press, 2005.76-85.
  • 10Chang KCC, He B, Zhang Z, Toward large scale integration: Building a MetaQuerier over databases on the Web. In: Proc, of the 2rid Int'l Conf. on Innovative Data Systems Research. Asilomar, 2005, 44-55.

共引文献58

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部